Energy Dependence of π^-/π^+ Ratio in In+²⁸Si Reaction

<u>M. Sako¹</u>, T. Murakami¹, Y. Ichikawa¹, S. Imajo¹, R. Sameshima¹, Y. Nakai², S. Nishimura², K. Ieki³, M. Matsushita³, J. Murata³, and E.Takatda⁴

¹Department of Physics, Kyoto University, Kyoto 606-8502, Japan ²RIKEN Nishina Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ³Department of Physics, Rikkyo University, Tokyo 171-8501, Japan ⁴Department of Accelerator and Medical Physics, NIRS, Chiba 263-8555, Japan

The density dependence of the nuclear symmetry energy $E_{sym}(\rho)$ is one of hot topics in both nuclear physics and astrophysics. The model calculations of heavy-ion reaction suggested that yield ratio $Y(\pi^-)/Y(\pi^+)$ for central heavy-ion collisions in intermediate energy region would provide significant constraint on the $E_{sym}(\rho)$ at supra-normal densities ($\rho > \rho_0$). The transport model calculation[1] predicted that the incident energy dependence of the $Y(\pi^-)/Y(\pi^+)$ is related with the behavior of $E_{sym}(\rho)$ in supra-normal density region and that the $Y(\pi^-)/Y(\pi^+)$ would increase as the incident beam energy approaches to the pion-production threshold.

We carried out measurements of the $Y(\pi^-)/Y(\pi^+)$ using 400, 600, and 800 MeV/nucleon with a centrality filter and a pion range counter, both of which consist of plastic scintillators [2][3]. The $Y(\pi^-)/Y(\pi^+)$ measured at 90° in the laboratory system is shown as a function of transverse momentum of pions in fig.1. Contrary to our expectations, there are not much difference of the $Y(\pi^-)/Y(\pi^+)$ between three different incident energies. The data analysis in mid rapidity region is in progress.

Figure 1: Results of $Y(\pi^-)/Y(\pi^+)$ yield ratios at 90° in the laboratory system for In+²⁸Si reactions at three different incident energies.

- [1] Bao-An Li, Lie-Wen Chen, Che Ming Ko, Phys. Rep. 464 (2008) 113.
- [2] T.Murakami et al., Nucl. Phys. A834 (2010) 593.
- [3] T.Murakami et al., RIKEN Accel. Prog. Rep. 43 (2010)(to be published)