Recent Results on π^-/π^+ Ratio for Constraining the High Density Behavior

of Nuclear Symmetry Energy

Ming Zhang, Zhi-Gang Xiao

Department of Physics, Tsinghua University, Beijing 100084, China

The large uncertainty of high-density (HD) behavior of the nuclear symmetry energy E_{sym} (ρ) has attracted much attentions for its deeply impact in both nuclear physics and astrophysics fields. The π^-/π^+ ratio in heavy-ion collisions has been known as a particularly sensitive probe of the HD behavior of E_{sym} (ρ). Very recently, by comparing the calculated results on π^-/π^+ ratio based on IBUU04 with the pion data from the FOPI collaboration, circumstantial evidence suggesting a rather soft E_{sym} (ρ) was reported, while a very stiff E_{sym} (ρ) was supported by IQMD calculations which is consistent with the conclusions at low densities. Therefore, the sensitivity of the probe π^-/π^+ ratio deserves further studies with different transport models in theory. On the other hand, more data on charged pion are expected to be accumulated in heavy-ion collisions at sub-GeV regime.

In the present work, we first calculate the π^{-}/π^{+} ratio and its dependence on the behavior of $E_{sym}(\rho)$ in head-on collisions of ${}^{48}Ca + {}^{48}Ca$, ${}^{124}Sn + {}^{124}Sn$ and ${}^{197}Au +$ 197 Au from 0.25 to 0.6 A GeV within IBUU04. With the similar isospin asymmetry in the above three systems, it is convenient to investigate the degree of isospin fractionation and the sensitivity of probing $E_{sys}(\rho)$ by separating the system size effect from the effect of varying the isospin asymmetry. It is shown that the π^{-}/π^{+} exhibits an increasing deviation from isobar model prediction with increasing the system size or decreasing the beam energy, indicating a clear dependence of the degree of isospin fractionation on the space-time volume of the collisions. The sensitivity of probing the nuclear symmetry energy $E_{svs}(\rho)$ with π^{-}/π^{+} exhibits a same dependence on the system size and beam energy in accordance with the behavior of the degree of isospin fractionation. Moreover, the calculated results show the differential π^{-}/π^{+} ratios are more sensitive to $E_{sym}(\rho)$ at forward angles in laboratory reference by analyzing the pion emission in Au+Au collisions. Last, the feasibility of measuring the π^{-}/π^{+} ratio to extract the E_{sym} (ρ) at limited phase space with a dipole-type spectrometer is studied based on the Geant4 simulation.

References

- [1] B.A. Li, 2002 Phys. Rev. Lett. 88 192701
- [2] Z.G. Xiao, B.A. Li, L.W. Chen, G.C. Yong and M. Zhang, 2009 Phys. Rev. Lett. 10 062502