The systematic dependence of $E(2_1^+)$ and energy ratio $R_{4/2}(=E(4_1^+)/E(2_1^+))$ on N, N_pN_n , N_B and p-factor for A=120-200 mass region nuclei

Vidya Devi¹ and H.M. Mittal¹

¹Department of Physics, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar-144011, PUNJAB, INDIA

The systematic dependence of energy $E(2_1^+)$ and energy ratio $R_{4/2}(=E(4_1^+)/E(2_1^+))$ on neutron number (N), number of valence proton and valence neutron (N_pN_n) , total boson number (N_B) and p-factor $(p = N_pN_n = (N_p + N_n))$ for A=120-200 mass region nuclei. Gupta et al. [1] grouped the A=120-200 nuclei into four quadrants. The first quadrant (Q-I) of N > 82 is of Z=50-82, $82 \le N < 104$ shell space with particle like proton-bosons and neutron-bosons forming the p-p space. Second quadrant (Q-II) of $82 \le N \le 104$ is of Z=50-82 shell space, with hole like proton-bosons space and particle like neutron-bosons space forming the h-p space. Third quadrant (Q-III) of $104 \le N < 126$ of Z=50-82 shell space, with hole like proton-bosons and neutron-bosons forming h-h space. The fourth quadrant (Q-IV) of N < 82 of Z=50-82 shell space with particle like proton-bosons and hole like neutron-bosons forming the p-h space. In brief, quadrant I and III for p-p and h-h bosons space, and II, IV for p-h and h-p bosons space respectively. A simple exponential dependence of $E(2_1^+)$ and a smooth variation of $R_{4/2}$ on N, N_pN_n , N_B and p-factor is obtained. For these calculation the experimental data are taken from [2].

[1] J. H. Hamiltonian, A. V. Armayya and J. B. Gupa, Bull. Am. Phys. Sco. 32, 2130 (1987)
[2] www.bnl.nndc.gov / nsdf.