M. A. Famiano NuSYM Meeting July 26, 2010

EXPERIMENTAL INVESTIGATIONS OF THE SYMMETRY ENERGY USING NEUTRON-PROTON RATIOS

Supported by NSF Grants #PHY-0757257, #PHY-0923087

Introduction

- Significance of the symmetry energy at low and high density
- Neutron-proton emission observables
 - Stiffness of the asymmetry energy
 - In-medium cross-sections
 - Correlations
- Experimental plans
 - Exceeding nuclear saturation density

Astrophysical Importance of the **Nuclear Asymmetry Term**

J. Lattimer et al.

1.75

R

 (\mathbf{km})

16

1.5

0.5

15 Macroscopic properties: Neutron star radii, moments 14.5 and central densities. 14 Maximum neutron star mass £13.5 rotation frequencies. Thickness of the inner crust. $\boldsymbol{\gamma}$ 13 Frequency change accompa 12.5 quakes. 12 Role of Kaon condensates and n quark-hadron phases in the stella 11.5 Proton and electron fractions through the second se 11 the star. 0.25 0.5 0.75 1.25 1.5 1 Cooling of proto-neutron star $= const. \cdot F(u); u = \rho / \rho_0$ 12 S_{not}

Asymmetric Nuclear Matter

Spectral Ratios

- Neutron-Proton emission ratios at subsaturation densities
 - Pre-equilibrium emission in heavy-ion fragmentations
 - Less variation with δ in asy-stiff EOS than asy-soft EOS: Larger change = softer asymmetry
- Double ratios ${}_{1}R_{124}/{}_{1}R_{112}=(dn_{n}/dn_{p})_{124}/(dn_{n}/dn_{p})_{112}$
 - Independent of Coulomb and efficiency effects
 - More sensitive to "asy-soft" EOS at subsaturation density

Past Results: N/P Ratios

Experimental Details

- Beam: ^{40,48}Ca +^{112,124}Sn 140MeV/A
- Also ^{112,124}Sn +^{112,124}Sn 50 MeV/A
- Neutron-proton observables
 - N/P ratios
 - Average rapidity dist.
 - N-P correlations?
- Sensitivity near saturation
- Data necessarily includes clustering in exactly the right amounts

Experimental Results Comparison

Mirror Nuclei Ratios

 dN_{i}

 ^{3}He

Mirror Nuclei Ratios

Mirror Nuclei Ratios

Effective Masses Alter In-Medium Cross-Sections

⁴⁰Ca+¹⁰⁰Zn b=0, E/A = 200 MeV

Same Line Type: Different γ but same in-medium σ .

Diamonds: Same γ and different in-medium σ .

 $\sigma_{medium} / \sigma_{free} \approx \left(\frac{\mu_{NN}}{\mu_{NN}} \right)$

Neutron Spectra, Correlations

Predicted Correlation Function

Neutron-Proton Emission Above Saturation Density

Isospin asymmetry and Differential flow:

Possible sensitivity at larger Beam energies.

NOTE: Free nucleons only.

Asymmetry Above Saturation Density: Possibility for n/p Ratios?

Summary

- Recent progress in isotopic observables of the low-density asy-EOS: Many isotopic observables at low density
- Work towards expansing isotopic observables to the high-density asy-EOS
 - Ratios
 - Correlations
- Constraining theory: effective masses
- Equipment for the high-density asy-EOS

Towards Higher Density

Isotopic observables Descible difficulties in

 Possible difficulties in "freeze out" conditions? Stiffer EOS favors symmetric Dense regions: More +: Lower π^{-}/π^{+} .

Softer EOS is less strongly Symmetric: Suppression of π^+ .

AT-TPC

	Density R
$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	t/ ³ He production
>	Pre-equilibrium nucleo
$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	Isospin fractionation
$\mathbf{\mathbf{\mathbf{x}}}$	Isoscaling
>	Isospin diffusion
×	Neutron-proton correl:

SAMURAI Configuration

6/12/2003

Current Concept: Modification of EOS TPC.

SAMURAI Dipole Specifications			
Magnet Type	Н		
Maximum Rigidity	7 Tm		
Pole Diameter	2m		
Return Yoke Dimensions	6.8m x 3m x 1.4 m		
Top and Bottom			
Return Yoke Dimensions	1.7m x 0.7m x 1.88m		
Sides			
Central Field	0.4-3 T (at the center)		
Magnet Gap	0.88 m - 0.8 m with vacuum chamber		
Mounting	Rotatable Base		
Total Weight	630 T		

SAMURAI TPC Parameters

Pad Plane Area	1.3m x 0.9 m
Number of Pads	11664 (108 x 108)
Pad Size	12 mm x 8 mm
Drift Distance	55 cm
Pressure	1 atm
Gas Composition	90% Ar + 10% CH ₄
Gas Gain	3000
E Field	120 V/cm
Drift Velocity	5cm/μs
dE/dx range	Z=1-8, π, p,d,t,He,Li-O
Two Track Resolution	2.5 cm
Multiplicity Limit	200

Current Landscape

