LPC, CNRS/IN2P3, Ensicaen, Université de Caen Basse Normandie, F-14050 Caen cedex, France.

Université de Lyon, Université Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, F-69622 Villeurbanne, France.

A study of stopping power in nuclear reactions at intermediate energies

Grégory Lehaut, Dominique Durand and Olivier Lopez For INDRA Collaboration

NuSym10 RIKEN, Wako, Japan 26-28 July.

Motivations

Study of transport phenomena in nuclear reactions

- ► link with the viscosity (macroscopic degrees of freedom) at low energy $(E < E_f)$
- ▶ link with the in-medium nucleon-nucleon cross-section (microscopic dof) at high energy $(E > E_f)$

Be of interest to describe

- ▶ the process of supernova collapse and formation of a neutron star¹
- ► the various mechanisms in nuclear reactions: fusion, deep-inelastic, incomplete fusion ²
- 1: J.M. Lattimer and M. Prakash : Astrophys. J 550, 426 (2001).
- 2: E. Suraud, D. Durand and B. Tamain Nuclear Dynamics in the Nucleonic Regime

INDRA dataset

Symmetric collisions

- Incident energy between 12 and 100 MeV/A
- ▶ Total size between A=80 and A=400

Isospin pairs at 32 and 45 MeV/A

- ▶ $^{124}Xe + ^{112}Sn \Rightarrow N/Z = 1.27 \bigcirc \rightarrow \bigcirc PP$
- ▶ ¹²⁴Xe + ¹²⁴Sn \Rightarrow N/Z = 1.38 \bigcirc \rightarrow \bigcirc PN
- ▶ ¹³⁶Xe +¹¹²Sn \Rightarrow N/Z = 1.38 \bigcirc \rightarrow \bigcirc NP
- ▶ $^{136}Xe + ^{124}Sn \Rightarrow N/Z = 1.50 \bigcirc \rightarrow \bigcirc NN$

► N/Z variation around 15-20%

- memory of entrance channel is lost
- no preferential axis

- memory of the entrance channel is partially conserved
- preferential direction along the beam axis

Method

$$E_{iso} = \frac{1}{2} \frac{\sum E_{\perp}}{\sum E_{\parallel}}$$

Method

$$E_{iso} = \frac{1}{2} \frac{\sum E_{\perp}}{\sum E_{\parallel}}$$

	Stopping power				
			_	_	
Method	$E_{iso} = \frac{1}{2} \sum_{iso} E_{iso}$				
	$2 \sum l$	=	Б 1	F 1	Б _1

¹²⁹Xe+^{nat}Sn @ 50 MeV/A

 $E_{iso} = 1$ $E_{iso} > 1$

 $E_{iso} < 1$

	Stopping power			Comparison with a microscopic model: ELIE	
Method	$E_{iso} = \frac{1}{2} \frac{\sum E}{\sum E}$				
	2	•	$E_{iso} = 1$	E _{iso} >1	$E_{iso} < 1$

¹²⁹Xe+^{nat}Sn @ 50 MeV/A

toward central collisions

 \Rightarrow cross section \approx 50*mb* (0.1*b*_{max})

Method

$$E_{iso} = \frac{1}{2} \frac{\sum E_{\perp}}{\sum E_{\parallel}}$$

¹²⁹Xe+^{nat}Sn @ 50 MeV/A

 \Rightarrow cross section \approx 50*mb* (0.1*b*_{max})

Method

$$E_{iso} = \frac{1}{2} \frac{\sum E_{\perp}}{\sum E_{\parallel}}$$

¹²⁹Xe+^{nat}Sn @ 50 MeV/A

no full stopping

 $E_{iso}^{cen} < 1$

 \Rightarrow cross section \approx 50*mb* (0.1*b*_{max})

Systematics

- minimum at $E = E_f$
- saturation above E_f, and hierarchy with the mass of the system: the higher A_{tot}, the higher E_{iso} is
- transition from one-body to two-body dissipation
- G. Lehaut, et al., PRL 104, 232701 (2010)

Isospin effect

- $\blacktriangleright {}^{124}Xe + {}^{124}Sn \quad \Rightarrow PN$
- $\blacktriangleright \ ^{136}Xe + ^{112}Sn \quad \Rightarrow NP$
- $\blacktriangleright \ ^{136}Xe + ^{124}Sn \quad \Rightarrow NN$

• Error bars are here systematics

 small effect of the isospin content at E around E_f (extension to higher and lower E are in the perspectives)

- memory of entrance channel is lost
- same isospin everywhere

- memory of the entrance channel is partially conserved
- dependence of the isospin along the beam axis

Isospin diffusion

Imbalance ratio

$$\tilde{R}_{p/t} = \frac{2R_{p/t} - R_{p/t}^{NN} - R_{p/t}^{PP}}{R_{p/t}^{NN} - R_{p/t}^{PP}}$$

where $R_{p/t}$ is the normalized yield of different particles in isospin here

proton over triton.

$$\tilde{R}_{proton/triton} = \begin{cases} +1 & \text{if} \quad R_{p/t} = R_{p/t}^{NN} \\ -1 & \text{if} \quad R_{p/t} = R_{p/t}^{PP} \end{cases}$$

- F. Rami, PRL 84, 1120 (2000)
- V. Baran, PRC 72, 064620 (2005)

Xe+Sn @ 32 MeV/A

Xe+Sn @ 32 MeV/A

Proton triton ratio along the beam axis (in central collisions)

Isospin equilibration

Xe+Sn @ 32 MeV/A

ratio depends on projectile

 Imbalance ratios shows nuclear transparency at 32A MeV for central collisions

Proton triton ratio along the beam axis (in central collisions)

Xe+Sn at 45 MeV/A central collisions

Imbalance ratios shows nuclear transparency at 45A MeV for central collisions

Comparison with a microscopic model: ELIE

Entrance channel

- geometry + nn collision: mean free path λ
- conservation laws are taken into account : \vec{p} , E, Z, N
- maximal internal temperature T=5.5 MeV for primary fragments (A > 6)
- discrete excited levels are considered up to A=10, above Fermi gas level density is assumed
- ▶ N/Z memory of the entrance channel : no isospin relaxation
- nucleons momentum distributions are 2 Fermi spheres at T=0 : sudden approximation (valid at E > E_f)

Exit channel

The partition $\{Z_i, A_i, \vec{r_i}, \vec{p_i}\}$ is propagated in space-time and in-flight statistical secondary decays are considered : SIMON code

D. Durand, in preparation

Comparison on some basic observables : Ni + Ni@52A.MeV

 $\mathsf{INDRA}:\mathsf{selection}\; Z^{FW}_{tot}\in [0.8; 1.2]$

ELIE filtered : selection $Z_{tot}^{FW} \in [0.8; 1.2]$

An excellent agreement between ELIE and the INDRA data is found

Comparison on stopping: Ni + Ni@52A.MeV, central collisions $\nu > 26$

▶ sensitivity to λ is found for E_{iso}^{cen} , especially for $\lambda < (R_{proj} + R_{targ})$

► data is closer to \u03c0 = 15 fm (> R_{proj} + R_{targ}), suggesting no complete thermalization since the number of collisions per participant is less than 1.

Summary and Perspectives

Summary

- Stopping power is minimum around the Fermi energy (30-40 MeV/A)
- ► The isospin of the entrance channel has no effect on the stopping around E = E_f. Is it still true for E < E_f and E >> E_f ?
- The study of imbalance ratios shows nuclear transparency at 32 and 45A MeV for central collisions

Perspectives

- Systematic comparison with microscopic models (ELIE, HIPSE, QMD) , . . .
- ► Study the asymmetric collisions: ¹⁸¹ Ta +^{64,68} Zn@19, 32, 39A.MeV ⇒ INDRA experiment planned at GANIL in 2011.

Comparison with FOPI

$$\mathit{vartl} = rac{\mathit{var}(y_\perp)}{\mathit{var}(y_\parallel)}$$

Comparison IQMD¹

¹J.-Y. Liu, et al., PRL 86 975 (2001)

Imbalance ratio ${}^{3}He/t$

