Nuclear Symmetry Energy in the Brueckner-Hartree-Fock Approach

Zenghua Li & U. Lombardo & H.-J. S. INFN Catania

PRC 74, 047304 (2006) • PRC 77, 034316 (2008) • PRC 78, 028801 (2008)

Brueckner Theory of Nuclear Matter:

• Effective in-medium interaction G from potential V:

Compute: binding energy, s.p. properties, cross sections, ...

K.A. Brueckner and J.L. Gammel; PR 109, 1023 (1958) for nuclear matter

• BHF binding energy and saturation point of nuclear matter:

TBF substantially improve saturation properties

Motivation for TBF:

- Structure of (light) nuclei, nucleon-deuteron scattering
- Saturation of nuclear matter
- Nuclear EOS at high density

Goal:

- Construct nuclear TBF consistent with a given mesonexchange NN potential (Bonn B, Nijmegen 93)
- Use in microscopic BHF calculation of high-density nuclear matter
- Neutron star structure

Three-Nucleon Forces:

- Only small effect required [$\delta(B/A) \approx 1 \text{ MeV}$ at ρ_0]
- Model dependent, no final theory yet
- Use and compare microscopic and phenomenological TBF...
 - Microscopic TBF of P. Grangé et al., PRC 40, 1040 (1989): Exchange of π, ρ, σ, ω via Δ(1232), R(1440), NN
 Parameters compatible with two-nucleon potential (Paris, V₁₈,...)
 - Urbana IX phenomenological TBF: Only 2π -TBF + phenomenological repulsion Fit saturation point

Microscopic Meson Exchange TBF:

FIG. 3. Leading order contributions to the three-body force deduced from the meson-exchange current operators indicated in Fig. 2. See text for the explanation of the various groups (a)-(c).

P. Grangé, A. Lejeune, M. Martzolff, J.-F. Mathiot; PRC 40, 1040 (1989)

 π, ρ - part based on Tuscon-Melbourne TBF: S.A. Coon et al., NPA 317, 242 (1979); NPA 438, 631 (1985); PRC 48, 2559 (1993);

Effects of Δ(1232), R(1440), NN

 Parameters compatible with two-nucleon (Paris) potential

Some Details:

Average over spectator nucleon using BHF defect function:

 $\rho NN, \rho N\Delta$ form factors and kinematical factors

Meson Exchange Parameters:

Table 1: Meson-exchange parameters of the Bonn B and Argonne V_{18} potentials. The letter in brackets denotes the type of form factor: (M)onopole, (D)ipole, (R)oper. We use the baryon masses $m_N = 938.4$ MeV, $m_\Delta = 1232$ MeV, $m_R = 1440$ MeV.

		<i>m</i> (MeV)	$g^{2}/4\pi$	Λ (MeV)	
Bonn B	π	138	14.4	1700 (M)	a = 1.38, b = -2.80, c = 1.25: TM(99)
	ρ	769	0.90	1850 (D)	$\kappa = 6.1, \ g_{\pi N\Delta}/g_{\pi NN} = g_{\rho N\Delta}/g_{\rho NN} = 1.8$
	σNN	550	8.94	1900 (M)	
	ωNN	783	24.5	1850 (D)	
	σNR	550	0.8	2000 (R)	$\alpha = 1$
	ωNR	783	1.0	1850 (R)	$\alpha = 1$
V ₁₈	π	138	14.43	1580 (M)	a = 1.12, b = -2.49, c = 0.98: TM(81)
	ρ	776	0.55	1400 (M)	$\kappa = 6.6, \ g_{\pi N\Delta}/g_{\pi NN} = g_{\rho N\Delta}/g_{\rho NN} = 1.8$
	σNN	540	11.9	1100 (M)	
	ωNN	780	33.0	1300 (M)	
	σNR	540	2.58	1450 (R)	$\alpha = -2.35$
	ωNR	780	4.23	1550 (R)	$\alpha = -2.33$

Nij93 has more parameters: 2 scalar mesons, wide σ and ρ mesons, "pomeron"

Results with Bonn B potential ...

Individual Meson Exchange Contributions:

Phenomenological TBF (Urbana Model):

• Two pion exchange + phenomenological repulsion:

$$V_{ijk} = \sum_{cyc.} \left[\begin{array}{c} \mathbf{A} \left\{ X_{ij}, X_{jk} \right\} \left\{ \mathbf{\tau}_i \cdot \mathbf{\tau}_j, \mathbf{\tau}_j \cdot \mathbf{\tau}_k \right\} \\ + \frac{\mathbf{A}}{4} \left[X_{ij}, X_{jk} \right] \left[\mathbf{\tau}_i \cdot \mathbf{\tau}_j, \mathbf{\tau}_j \cdot \mathbf{\tau}_k \right] + \mathbf{U} T_{ij}^2 T_{jk}^2 \end{array} \right]$$
$$X_{ij} = Y(m_{\pi} r_{ij}) \mathbf{\sigma}_i \cdot \mathbf{\sigma}_j + T(m_{\pi} r_{ij}) S_{ij}$$
$$Y(x) = \frac{e^{-x}}{x} \left(1 - e^{-cr^2} \right) , \ T(x) = \left(1 + \frac{3}{x} + \frac{3}{x^2} \right) \frac{e^{-x}}{x} \left(1 - e^{-cr^2} \right)^2$$

- Corresponds to micro TBF with only $\pi\pi$ contribution and $A = -\frac{2}{81} \frac{(m_{\pi} f_{\pi NN} f_{\pi N\Delta})^2}{m_{\Delta} - m_N}$
- Optimal parameters for BHF+TBF (with V₁₈ 2BF): $A \approx -0.0500 \text{ MeV}$, $U \approx 0.00126 \text{ MeV}$

Phenomenological vs. Microscopic TBF:

- Compare micro TBF with V₁₈, Bonn B, or Nijmegen 93 potential and UIX TBF (with V₁₈):
 - $\overline{V}_{ij}(\boldsymbol{r}) = (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) V_C(r) + (\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) V_S(r) + V_I(r)$ $+ S_{ij}(\hat{\boldsymbol{r}}) [(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) V_T(r) + V_Q(r)]$ at $\rho = \rho_0$:

Results of BHF+TBF Approach:

• Symmetry energy, EOS, saturation properties:

	[ρ, Β/Α] ₀	К	$E_{\rm sym}$	E' _{sym}
	[fm ⁻³ ,MeV]	MeV	MeV	MeV
N93	[0.18,-15.4]	216	34.0	35.5
BOB	[0.17,-15.9]	244	29.4	24.8
V18	[0.20,-14.7]	226	30.6	33.8
UIX	[0.18,-15.3]	192	33.5	24.5

Nuclear flow analysis of Science 298, 1592 (2002)

Results of BHF+TBF Approach:

• Symmetry energy, EOS, saturation properties:

	[ρ, Β/Α] ₀	К	$E_{\rm sym}$	E′ _{sym}
	[fm ⁻³ ,MeV]	MeV	MeV	MeV
N93	[0.18,-15.4]	216	34.0	35.5
BOB	[0.17,-15.9]	244	29.4	24.8
V18	[0.20,-14.7]	226	30.6	33.8
UIX	[0.18,-15.3]	192	33.5	24.5

← No asy-soft EOS !

Nuclear flow analysis of Science 298, 1592 (2002)

Symmetry energy with and without TBF:

 \hookrightarrow TBF increase slope of $E_{sym}(\rho)$

Neutron star structure:

• Solve TOV equations:

Self-regulating softening due to hyperon appearance

Neutron star structure:

• Solve TOV equations:

Self-regulating softening due to hyperon appearance

Summary:

- Consistent microscopic TBF + BHF provide reasonable saturation properties
- $E_{sym}(\rho)$ rises faster than linear in all models
- Uncertain high-density behavior: $M_{\text{max}} \approx 1.8 2.5 M_{\odot}$

Summary:

- Consistent microscopic TBF + BHF provide reasonable saturation properties
- $E_{sym}(\rho)$ rises faster than linear in all models
- Uncertain high-density behavior: $M_{\text{max}} \approx 1.8 2.5 M_{\odot}$

Future:

- Technical improvements:
 3rd nucleon average, static approximation, ...
- BHF with TBF + 3 hole line corrections
- Micro TBF in light nuclei ?