# Low spin identical bands in adjacent even-even nuclei of A=120-200 region

H. M. Mittal<sup>\*</sup> and Vidya Devi

Dr. B.R. Ambedkar National Institute of Technology, Jalandhar-144011, INDIA

\*email: mittalhm@nitj.ac.in

#### Abstract

The study of identical bands in neighboring even-even nuclei of A = 120-200 mass region by the influence of moment of inertia is carried out. A correlation to identify such nuclei is based on the concept of  $N_pN_n$  scheme (where  $N_p$  number of valence proton and  $N_n$  number of valence neutron) and F-spin multiplets. The F-spin multiplets are found to be constant for the ground and gamma bands whereas vary for the beta band. The F-spin multiplets are also helpful to understand the structure of nuclei.

### Introduction

The neutron deficient (N<82) light mass (A=120-150) rare earth nuclei lying far from the  $\beta$ stability line has been of current interest in nuclear structure theory. The level pattern of these even Z-even N nuclei differ from N >82 nuclei in the degree of deformation. Here in N<82 region the energy ratio (R<sub>4/2</sub>=E(4 + )/E(2 + )) lie between 2.0-3.1. Also most of nuclei are  $\gamma$  soft [1]. Therefore the study of identical bands in this region is of current interest. Casten et al. [2] have studied the low spin identical bands in <sup>156</sup>Dy-<sup>180</sup>Os widely dispersed nuclei. A simple correlation exists between the nuclei showing identical spectra and their valence neutron proton (N<sub>p</sub>), neutron number (N<sub>n</sub>). The identification of such a correlation scheme provided the clue to understand the identical band phenomenon. A very important concept of F-spin plays an important role to understand the structure of IBM-2. Then it was natural to assume that the nuclei with equal total boson number N<sub>B</sub>=N<sub>p</sub>+N<sub>n</sub> should have the same deformation and identical spectra. The number of valance proton N<sub>p</sub> and neutron N<sub>n</sub> has a total N= (N<sub>p</sub>+N<sub>n</sub>)/2 = N<sub>π</sub> +N<sub>ν</sub> bosons. The projection of these nuclei are denoted as F<sub>0</sub> = (N<sub>π</sub> +N<sub>ν</sub>)/2 [3]. These N<sub>π</sub> proton boson and  $N_{\nu}$  neutron boson are assigned F-spin F=1/2 with projections F<sub>0</sub>=1/2, (proton bosons) and F<sub>0</sub> =-1/2 (neutron bosons) respectively. Harter et al. [4] observed that IBM-2 Hamiltonian and projected IBM-1 Hamiltonian gave the same energies for states of maximum F-spin provided they have pure F-spin. The projected IBM-1 Hamiltonian will give constant energies across F-spin multiplet when IBM-2 parameters and  $N_{\pi} + N_{\nu}$  product have constant values. Since product of value  $N_pN_n = 4(F^2 - F_0^2)$ , the pair of nuclei having same F value with projections +F<sub>0</sub> and -F<sub>0</sub> will have the same value of  $N_pN_n$  and may be expected that nuclei exhibit the identical excitation energies. The aim of the present work is to search the identical bands in Xe-Gd nuclei. We study it in terms of F-spin multiplet or ensembles of nuclei expected to have similar properties. For this the experimental data are taken from [5].

#### **Result and Discussion**

In Fig. 1 we show the variation of excitation energy of ground and gamma bands for N>82 region nuclei where the value of  $N_p$  and  $N_n$  are mentioned below each nucleus.

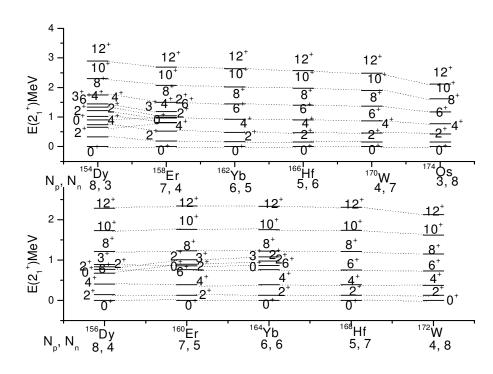



Fig.1 F-spin multiplets with F=11/2 and F=12, N<sub>p</sub> and N<sub>n</sub> are proton and neutron boson numbers. We show the levels of ground band, gamma band and beta band.

For both odd and even value of  $N_pN_n$  multiplet the excitation energies of the ground bands are quite constant and show close agreement with each other. Hence excitation energies of ground and gamma bands show constant behavior upto  $J=12^+$  spin level. It is impressive that how constant the energy of ground and gamma bands when we consider that the two multiplet contain nuclei of different mass number. A small deviation occurs in <sup>174</sup>Os and <sup>172</sup>W at higher spin level i.e.  $J=12^+$ .

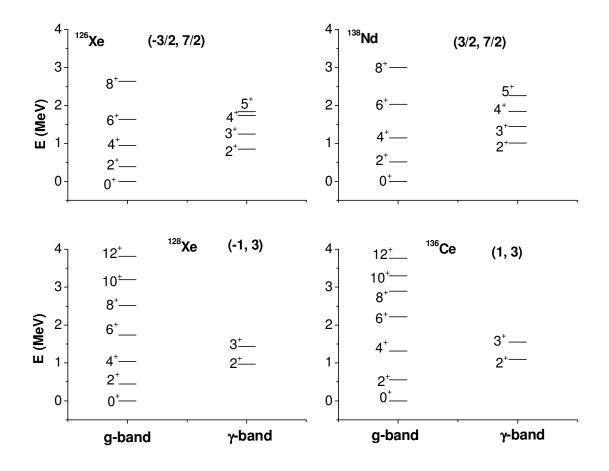



Fig. 2 The pairs conjugate nuclei having the same  $|F_0|$  and  $N_pN_n$ ,  $N_n$  values are compared for their band spectra for N < 82 region.

In Fig. 2-4 we have compared the g-band and  $\gamma$ -band spectra of pair of conjugate nuclei having the same  $|F_0|$  and  $(N_p+N_n)/2$  values, i.e. the <sup>126</sup>Xe having  $F_0=-3/2$  and  $(N_p+N_n)/2=7/2$  is symmetric with <sup>136</sup>Nd with  $F_0=3/2$  and  $(N_p+N_n)/2=7/2$ . Hence <sup>128</sup>Xe, <sup>126</sup>Ba, <sup>128</sup>Ba, <sup>130</sup>Ba and <sup>130</sup>Ce show symmetry with <sup>136</sup>Ce, <sup>138</sup>Sm, <sup>136</sup>Nd, <sup>134</sup>Ce and <sup>134</sup>Nd respectively. The agreement amongst the pair is impressive. There is no violation of this symmetry in the experimental data in this (N<82) region. It allows predicting the existence of identical bands in this region.

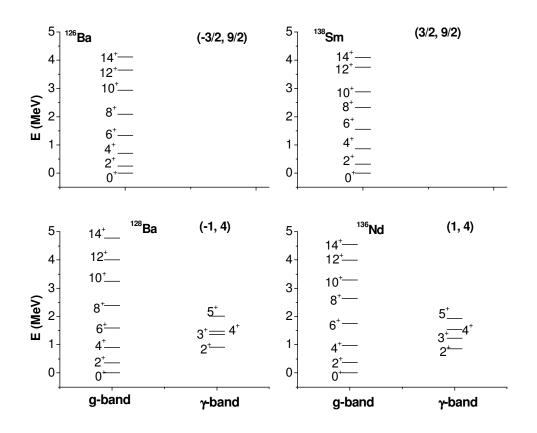



Fig.3 The pairs conjugate nuclei having the same  $|F_0|$  and  $N_pN_n$ ,  $N_n$  values are compared for their band spectra for N < 82 region.

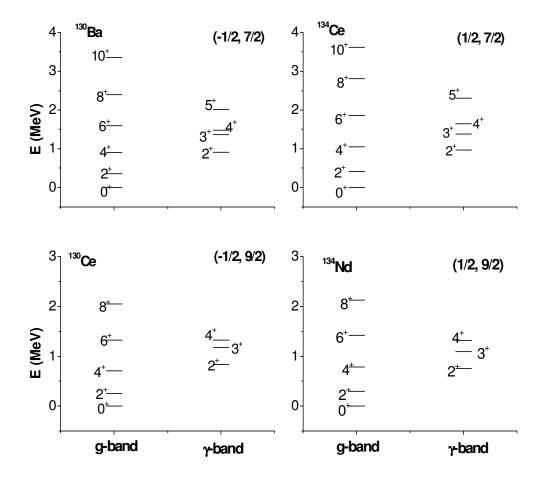



Fig.4 The pairs conjugate nuclei having the same  $|F_0|$  and  $N_pN_n$ ,  $N_n$  values are compared for their band spectra for N < 82 region.

#### Conclusion

In the above description we firstly observed that the ground and gamma band energies of F-spin multiplet in N<82 and N>82 region nuclei are constant. These data are helpful to describe the F-spin structure. Secondly the nuclei in an F-spin multiplet have  $F_0 (N_p - N_n)/4$  values from -F to +F [5]. We observe that the nuclei with symmetric  $F_0$  values in an F-spin multiplet have identical  $N_pN_n$  values. The agreement is excellent. Therefore more data will necessary to confirm the nature and extent of this kind of symmetry.

## References

- [1] Cizewski J A et al. Phys. Rev. Lett., 40 167 (1978).
- [2] Casten R F, Zamfir N V, von Brentano P and Chou W-T Phys. Rev. C 45 R1413 (1992).
- [3] Jain A K and Casten R F *Modern Physics Letters A* **3** 743 (1988). For a related idea, see P. C. Sood and Jain A K Z. *Phys. A* **320** 645 (1985).
- [4] Harter H, Gelberg A and von Brentano P 1985 Phys. Rev. C 157 1 (1985).
- [5] http://www.nndc.bnl.gov/
- [6] Mittal H M and Devi Vidya Proceeding Int. Symp. on Nucl. Phys. 54 170 (2009).