Energy Dependence of $\frac{\text{K}}{\text{K}^+}$ Ratio in In+${}^{28}\text{Si}$ Reaction

Contents

- Introduction
- Experiments and Analysis
- Discussion
- Summary

M. Sako1, T. Murakami1, Y. Ichikawa1, S. Imajo1, R. Sameshima1, Y. Nakai2, S. Nishimura2, K. Ieki3, M. Matsushita3, J. Murata3, and E. Takatda4

1Kyoto Univ., 2RIKEN, 3Rikkyo Univ., 4NIRS
Introduction
Symmetry Energy at high density

- **sub-saturation density**
 - some constraints

- **supra-saturation density**
 - The trend is not fixed.

Experiment at supra-saturation density
- Heavy Ion Collision at a few hundred MeV/nucleon
- probe: π^- / π^+ ratio
- Pion: created by decay of $\bar{K} K^- / K^+ K^0 (N/Z)^2$

Comparison between theory and experiment

IBUU04

![Graph showing comparison between Au+Au and IQMD](image1)

Comparison between theory and experiment

Im IQMD

![Graph showing comparison between Im IQMD and other models](image2)

The results of two calculations

Motivation

- **Long Term Plan**
 - N/Z ratio using isotope (unstable nuclei)
 - Beam Energy: a few hundred MeV/nucleon
 - We plan Sn isotope experiments at RIBF using SAMURAI-TPC.

- **Short Term Plan**
 - Experiments using stable beam
 - Beam Energy & N/Z Ratio Dependence
 - Measurement with various conditions
 - Experiments @ Medical Accelerator HIMAC
Experiment and Analysis
Experimental Setup

- **Beam**: ²⁸Si
- **Intensity**: ~ 10⁷ ppp
- **Energy**: 400, 600, 800 AMeV
- **Target**: In ~ 390 mg/cm²
- **Range Counter**: 14 layers (+2) of Sci.
- **measured angle (θ_lab)**: 30, 45, 60, 75, 90, 120 degree
- **solid angle**: 10 msr

Diagram:
- Beam
- Target
- Vacuum
- Multiplicity Array
- Ion Chamber
- Air
- Range Counter

NOT YET Analyzed
Identification principles of π^+ (and π^-)

<In flight>
- $\mathrm{d}E/\mathrm{d}x$ is identical for both π^+ and π^-

<After STOP>

- **π^+**
 - π^+ decay to π^+
 - π^+
 - Energy ~ 4 MeV
 - Range ~ 1 mm

- **π^-**
 - create a pionic atom and captured by a nucleus
 - decay to various particles
 - Unable to use the same identification method as π^+

- **π^+** : Double Hits in one counter

<identification step>
- π^+ ID using Double Hit Condition
- π^- ID using E conditions of well defined π^+
- π^- = $\pi^- - \pi^+$

π^-, π^+ by Simulation (Geant4)

- Red : π^+
- Blue : π^-
Histogram of Range Counter

Example counter: #8

STOP CONDITION

counter #0~8 Hit + counter #9~13 No Hit

E8 (MeV) All Events

counter #8 stop events

stop P through P
\(\Xi^+ \) Identification

< \(\Xi^+ \) events >

Counter #8 STOP Condition

+ #8 Double Hit Condition

Fit the Histogram

“2\(^{\text{nd}}\) Hit Time - 1\(^{\text{st}}\) Hit Time”

by \(Cexp(-t/\tau) \)

\(\tau = 26.0 \pm 0.6 \text{ nsec} \)

We could clearly select \(\Xi^+ \)

#8 stop events (black) & stop \(\Xi^+ \) (red)

We got \(\Xi^+ \) counts by extrapolation
□ E cut from #0 to 7 in 1 D

□ + (red) : STOP + Double Hits Conditions

 Diagram showing distribution of E cut from #0 to 7 in 1 D.
E cut from #0 to 7 in 1 D

□ + (red) : STOP + □ E CUT + Double Hit Conditions

□ (black) : STOP + □ E CUT Conditions
In order to check background, we rejected counter 6 & 7 E conditions.

There are background in black histogram.
We look n stop events in “n-2 vs n-1” distribution

We call these background as “Through Background” still remain by using E gate.
E cut on 2D

CHECK 6 vs 7 Histogram of 8 stop events

\{ • Red : \Box^+
 • Black : Other Particles (Background etc) \}

< Background Check >
E gates from #0 to 5
"Through Background" still exits.

Cut the “Through Background” using the straight line
Definition of π^-/π^+ ratio

- $\pi^-: \text{STOP} + \pi^- \text{ E cut} + \text{cut line}
- $\pi^+: \text{STOP} + \pi^+ \text{ E cut} + \text{cut line} + \text{Double Hit (extrapolation)}$

$$\pi^- / \pi^+ \text{ ratio} = \frac{\pi^\pm - \pi^+}{\pi^+}$$
Discussion
We discuss the data in Target and Mid Rapidity frames.
\(\square^-/\square^+ \) ratio in Lab frame

For each angle (45deg, 60deg, 90deg, 120deg), there are data points for different energies (400 MeV, 600 MeV, 800 MeV). The x-axis represents \(E_\perp (\text{MeV}) \) and the y-axis represents the \(\square^-/\square^+ \) ratio.
Slopes depend on Beam Energy:

- 400 MeV: 2.9×10^{-3}
- 600 MeV: 4.8×10^{-3}
- 800 MeV: 8.5×10^{-3}
Summary and Next Step

< Summary >

- There are energy dependence in pion ratio.
 - Especially for low energy pion in the mid rapidity frame.

< Next Step >

- We are planning next experiments
 - Good sensitivity to low energy pion
 - N/Z dependence using Xe isotope beam