Nuclear symmetry energy and neutron star cooling

Nguyen Van Giai(1), Hoang Sy Than(2), Dao Tien Khoa(2), Sun Bao Yuan(3)

1) Institut de Physique Nucléaire, Univ. Paris-Sud
 2) VAEC, Hanoi
 3) RCNP, Osaka

Outline

- 1. Importance of symmetry energy
- for neutron star cooling
- 2. Effective interactions
- 3. EOS and pressure
- 4. Symmetry energy and proton fraction
 - Hoang Sy Than, Dao Tiên Khoa, NVG Phys. Rev. C 80, 064312 (2009)
 - B.Y. Sun, W.H. Long, J. Meng, U. Lombardo Phys. Rev. C 78, 065805 (2008)

NUSYM10, RIKEN

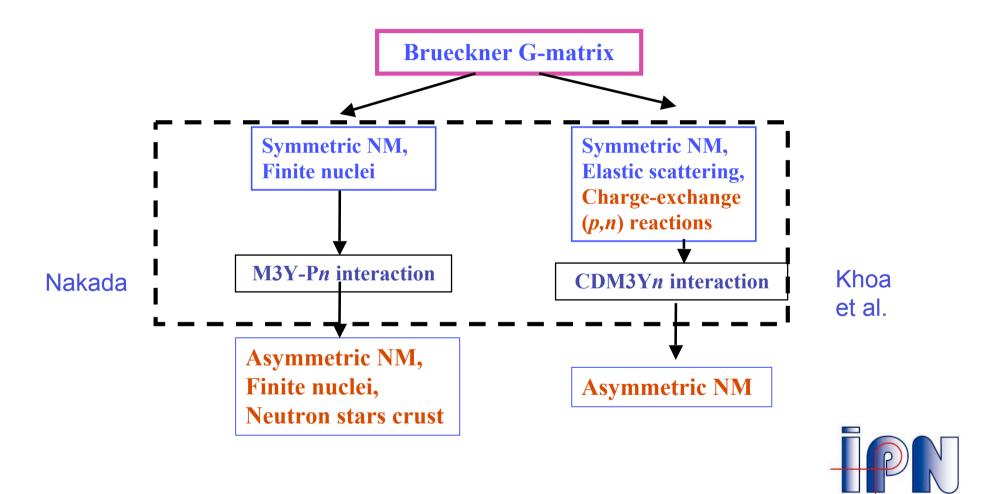
Cooling scenarios Direct URCA (DU) process:

 $n \rightarrow p + e^- + \bar{\nu}_e, \qquad p + e^- \rightarrow n + \nu_e.$

is possible if proton fraction x is larger than a threshold value x_thr >1/9 x is determined by symmetry energy:

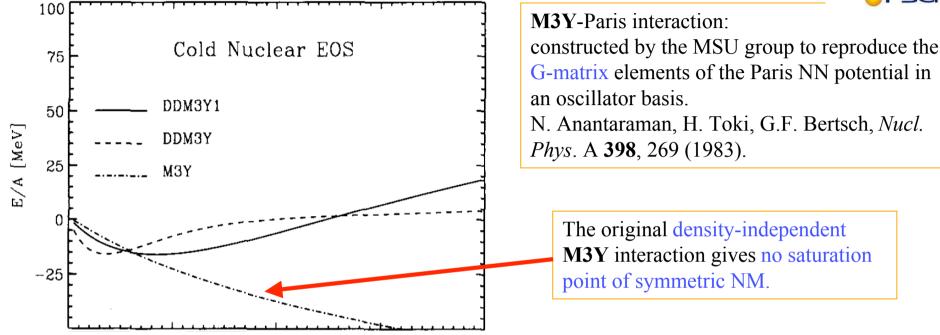
$$\hbar c (3\pi^2 \rho x_p)^{1/3} = 4S_{sym}(\rho)(1-2x_p)$$
. Balance Equation

Modified URCA process:


 $n+(n,p) \rightarrow p+(n,p)+e^-+\bar{\nu}_e, \qquad p+e^-+(n,p) \rightarrow n+(n,p)+\nu_e.$

Reaction rate 10⁴ - 10⁵ times smaller!

NUSYM10, RIKEN


G-matrix related interactions

rsay

G-matrix related interactions

(D.T. Khoa and W. von Oertzen, Phys. Lett. B 304, 8 (1993)).

By introducing a density dependence the modified effective M3Y interaction can describe the known NM properties. In this work, we will consider two different density dependent versions of M3Y interaction:

• M3Y-Pn type of Nakada: add a zero-range density-dependent force to the original M3Y interaction (H. Nakada, *Phys. Rev.* C 78, 054301 (2008)).

• **CDM3Y***n* type of Khoa: multiply the original M3Y interaction with a density-dependent factor (D.1. Khoa *et al.*, *Phys. Rev.* C56, 954 (1997)). 5

a) M3Y-Pn type interactions (H. Nakada, Phys. Rev. C 78, 054301 (2008).)

+ Finite-range density-independent term *plus* a zero-range density-dependent terr...

The M3Y-P*n* interactions has been parametrized to reproduce the saturation properties of symmetric NM, and give a good description of g.s. shell structure in double-closed shell nuclei and unstable nuclei close to the neutron dripline.

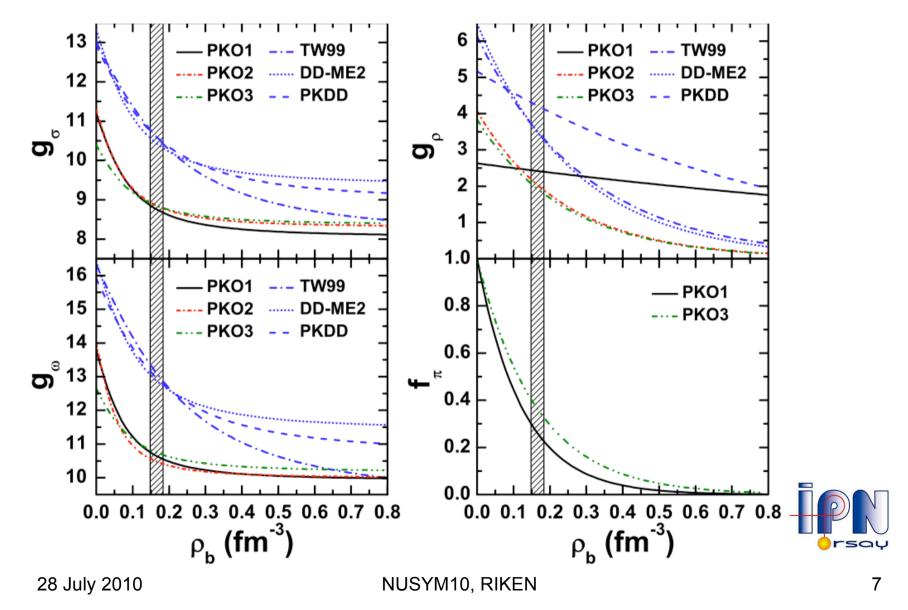
b) <u>CDM3Yn type interactions (complex)</u> (D.T. Khoa *et al.*, *Phys. Rev.* C 76, 014603 (2007).)

+ Finite-range density-dependence (multiplied with a density-dependent factor $F_{IS(IV)}(E,\rho)$).

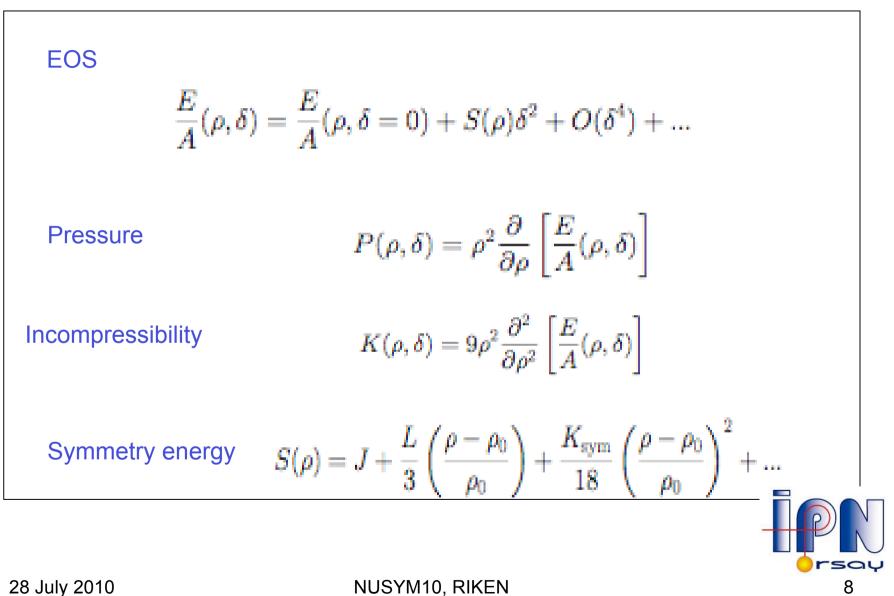
• *Isoscalar part*:

- + The real isoscalar part: parameters were chosen to reproduce saturation properties of symmetric NM.
 (D.T. Khoa, G.R. Satchler, W. von Oertzen, *Phys. Rev.* C56 (1997) 954)
- + The imaginary isoscalar part: use the same density dependent functional as the real part.

• Isovector part:


Use the similar form for the density dependence to construct separately the real (u=V) and imaginary (u=W) parts of the isovector CDM3Y*n* interaction.

Parameters of $F_{IS(IV)}(E,\rho)$ are determined based on the BHF results by J.P. Jeukenne, A. Lejeune and C. Mahaux, *Phys. Rev.* C 16, 80 (1977).


The isoscalar part of the CDM3Y*n* interaction has been well tested in the folding model analysis of the elastic and α -nucleus scattering. The isovector part can be probed in the study of IAS excitation by charge-exchange (*p*,*n*) reactions on 48Ca, 90Zr, 120Sn, 208Pb at E_p= 35 and 45 MeV.

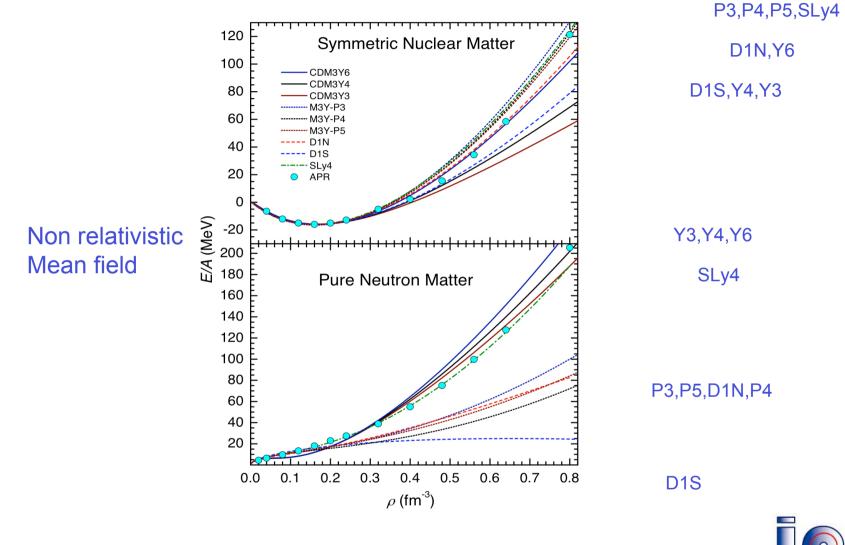
28 July 2010

Covariant models: RMF and RHF

Some definitions

Bulk properties (1)

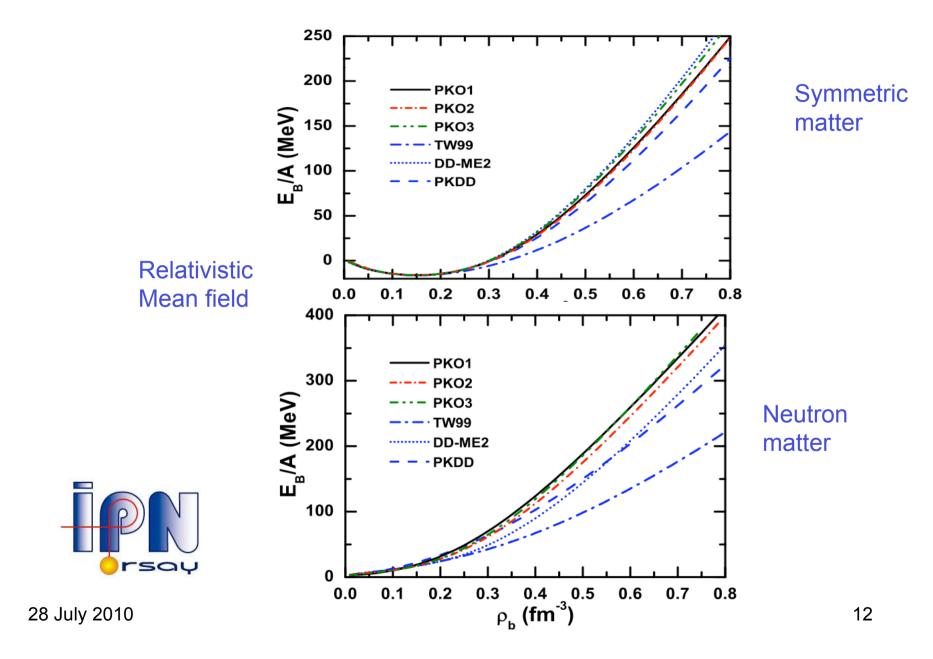
						-		
Inter.	ρ_0	E_0	K	J	L	$K_{\rm sym}$	K_{τ}	Ref.
	(fm^{-3})	(MeV)	(MeV)	(MeV)	(MeV)	(MeV)	(MeV)	
CDM3Y6	0.17	-15.9	252	29.8	62.5	39.0	-336	[18, 20]
CDM3Y4	0.17	-15.9	228	29.0	62.9	49.8	-328	[18]
CDM3Y3	0.17	-15.9	217	29.0	62.5	46.2	-329	[18]
M3Y-P3	0.16	-16.5	245	31.0	28.3	-213	-383	[24]
M3Y-P4	0.16	-16.1	234	30.0	21.1	-234	-361	[24]
M3Y-P5	0.16	-16.1	235	30.9	27.9	-217	-384	[24]
D1S	0.16	-16.0	203	31.9	23.7	-248	-390	[26]
D1N	0.16	-16.0	221	30.1	32.4	-182	-376	[27]
SLy4	0.16	-16.0	230	32.1	46.0	-120	-396	[28]
DBHF	0.18	-16.1	230	34.3	70.1	6.88	-414	[47]
$\mathbf{V}_{lowk}{+}\mathbf{C}\mathbf{T}$	0.16	-16.0	258	33.4	86.8	-44.6	-565	[48]
MDI (x=-1)	0.16	-16.0	211	31.6	107	94.1	-550	[39]
MDI (x=1)	0.16	-16.0	211	30.6	16.4	-270	-369	[39]
G2	0.15	-16.1	215	36.4	100.7	-7.5	-612	[40]
FSUGold	0.15	-16.3	230	32.6	60.5	-51.3	-414	[41]
Hybrid	0.15	-16.2	230	37.3	119	111	-603	[42]

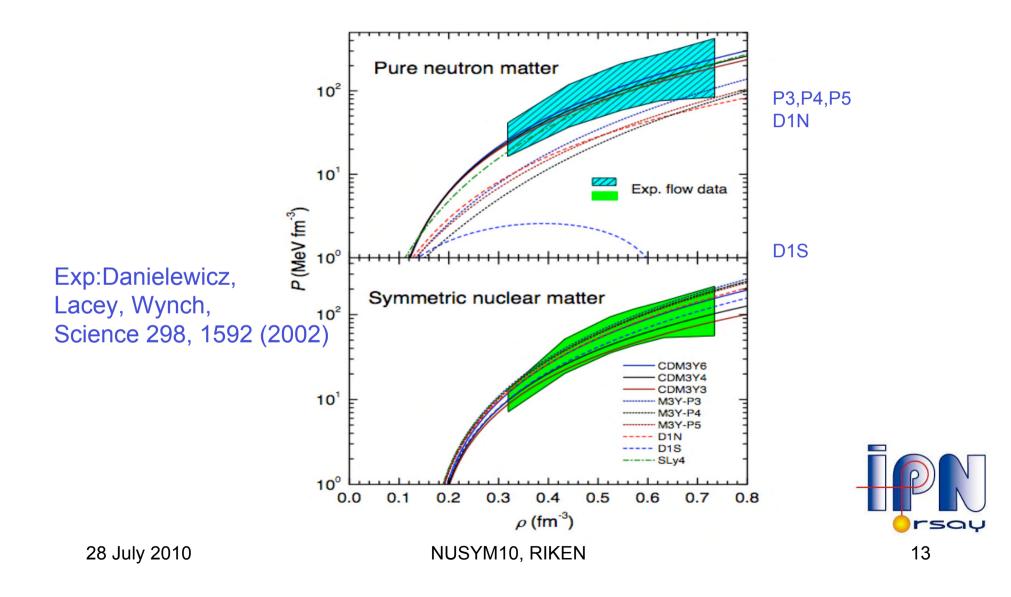

28 July 2010

NUSYM10, RIKEN

Bulk properties (2)

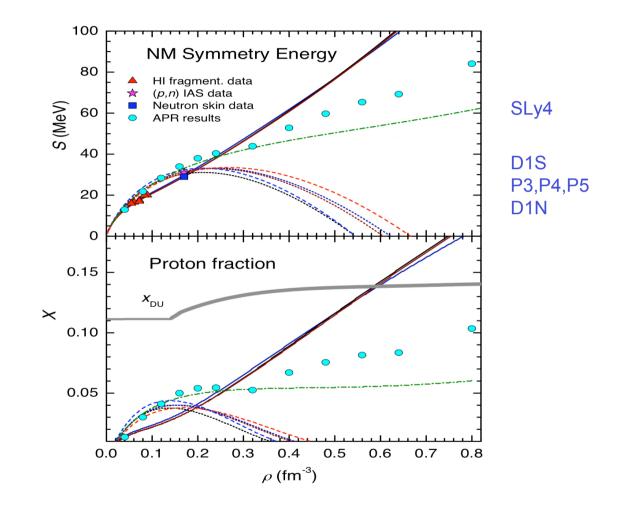
	$ ho_0$	E_B/A	K	J	M^*_S/M	
PKO1	0.1520	-15.996	250.239	34.371	0.5900	
PKO2	0.1510	-16.027	249.597	32.492	0.6025	
PKO3	0.1530	-16.041	262.469	32.987	0.5862	
GL-97	0.1531	-16.316	240.050	32.500	0.7802	
NL1	0.1518	-16.426	211.153	43.467	0.5728	
NL3	0.1483	-16.249	271.730	37.416	0.5950	
NLSH	0.1459	-16.328	354.924	36.100	0.5973	
TM1	0.1452	-16.263	281.162	36.892	0.6344	
PK1	0.1482	-16.268	282.694	37.642	0.6055	
TW99	0.1530	-16.247	240.276	32.767	0.5549	
DD-ME1	0.1520	-16.201	244.719	33.065	0.5780	
DD-ME2	0.1518	-16.105	250.296	32.271	0.5722	
PKDD	0.1496	-16.268	262.192	36.790	0.5712	o rsay



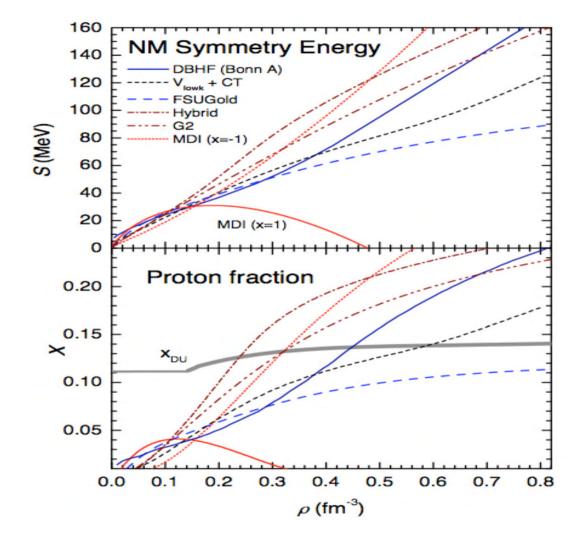

NUSYM10, RIKEN

rsay

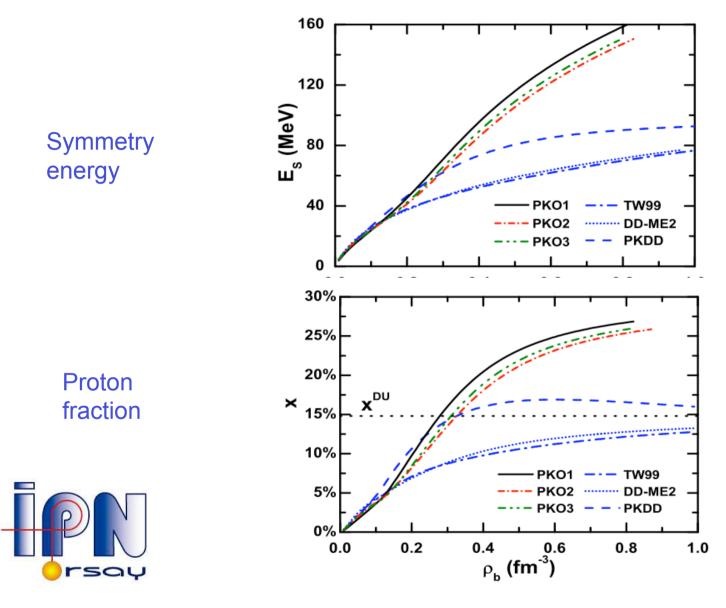
11


Equation of state (2)

Symmetry energy and proton fraction (1)


Y3,Y4,Y6

NUSYM10, RIKEN


Symmetry energy and proton fraction (2)

NUSYM10, RIKEN

Symmetry energy and proton fraction (3)

28 July 2010

NUSYM10, RIKEN

Conclusion

- For symmetric matter, all models more or less agree with APR predictions and empirical pressure from HI flow data.
- For neutron matter the models are divided into 2 families (asy-soft and asy-stiff symmetry energies).
- Only asy-stiff comply with empirical pressure.
- The 2 families correspond to different proton fractions at beta-equilibrium
- Non-relativistic models which describe well finite nuclei are generally asy-soft ---> disagree with empirical flow data? No direct URCA process?

