

RIKEN, Wako, Japan July 26-28, 2010

EoS of Nuclear Matter and Transport Parameters in Neutron Stars

U. Lombardo (Catania University & INFN-LNS)

- ✓ EoS of Nuclear Matter from Brueckner Theory
- ✓ In-medium NN Cross Section and Transport Parameters in β-stable Nuclear Matter
- ✓ Some Implications for the Rotational Dynamics of Neutron Stars:
 - i) Interplay between gravitational radiation and viscosity
 - in non radial modes of neutron stars
 - ii) thermal relaxation of 'newborn *NS'* and long era cooling (vs. urca processes and superfluidity)

Motivation

gravitational radiation emitted by r-modes in rapidly rotating neutron stars drives the instability of the system (Chandrasekhar 1970)

Which dissipation mechanism tend to suppress this instability? A good candidate is the shear viscosity

Which constituent of NS mainly contribute to the viscosity ? neutrons, leptons, hyperons, quarks,...

This is a preliminary investigation

ab initio Calculations from Brueckner theory

fit of experimental NN phase shifts

Output: In-medium Interaction : G_{NN}

zero density -> NN scattering amplitude

Properties of G-matrix:

- \Box EoS of Nuclear Matter $E=E(\rho,T)$
- **Symmetry energy Esym(** ρ ,*T***)**
- \Box MD mean field \rightarrow effective masses m_{p}^{*} and m_{n}^{*}
- □ *in-medium NN scattering amplitude*

providing a unified framework where to study equilibrium and transport properties of nuclear matter

Equilibrium : HJ Schulze talk

EoS of Nuclear Matter

$$E(\rho) = K + \frac{1}{2} \sum_{ST} \sum_{p, p' < p_f} < pp' | G^{ST}(\rho) | pp' >_a$$

$$E_{sym}(\rho) = E_{PNM}(\rho) - E_{SNM}(\rho)$$

NS internal structure

nucleons, hyperons, kaons, quarks in beta-equilibrium with leptons

> beta-equilibrium with electrons and muons : $p + e^- \rightarrow n + v$

hyperonized matter:	$n + n \rightarrow n + \Lambda (p + \Sigma)$	at	$\rho > 2\rho_o$
kaon condensation	$n \rightarrow p + K^-$	at	$\rho > 2-3\rho_o$
transition to quark matter	$HP \rightarrow QP (u,d,s)$	at	ρ ~ 6 ρ _o

Any new degree of freedom makes the EoS to be softer and the maximum mass turns out to be lowered

baryons are in weak-coupling with leptons (electrons,muons,...)

$$p + e^{-} \rightarrow n + V_{e}$$

$$n \rightarrow p + e^{-} + V_{e}$$

$$p + \mu^{-} \rightarrow n + V\mu$$

$$n \rightarrow p + \mu^{-} + V\mu$$

$$r \rightarrow p + \mu^{-} + V\mu$$

energy loss replacing a proton with a neutron, namely the symmetry energy (a_A in B - W mass formula, $N\neq Z$)

$$\rho_p \approx \frac{1}{2} \left(\frac{4E_{sym}}{\hbar ck_F} \right)^3$$

Gravitation vs Nuclear force: a new game Tolman-Oppenheimer-Volkov (TOV) and nuclear EoS

Input \rightarrow Equation of State P=P(ρ , ρ_p)

Transport Kinetic Equations -----multicomponent system-----

$$\frac{\partial f_i}{\partial t} + \nabla \varepsilon_i \cdot \nabla_p f_i - \nabla f_i \cdot \nabla_p \varepsilon_i = \sum_j I_{ij} = \sum \left(\frac{d\sigma_{ij}}{d\Omega} \right)_{med} \cdot (f_i \cdot f_j \cdot \tilde{f}_i \tilde{f}_j - f_i f_j \tilde{f}_i \cdot \tilde{f}_j \cdot)$$
gain loss

$$\varepsilon_{p}^{\tau} = \frac{p^{2}}{2m} + \sum_{\tau'} \sum_{p' < p_{f}} < pp' | G^{\tau\tau'} | pp' >_{a} = \frac{p^{2}}{2m_{\tau}^{*}} + U_{\tau}$$

$$\frac{d\sigma_{np}(\vartheta)}{d\Omega} \sim \frac{m^{*2}}{4\pi^2\hbar^4} \sum_{SS_zS_z'} |\langle p | G^S_{S_zS_z'}(\vartheta) | p' \rangle|^2$$

medium effects:

Pauli blocking: nucleons scatter into unoccupied states
 Strong mean field between two collisions
 Compression of the level densities in entry and exit chennels

Mean field and Effective Mass

empirical OMP data support the prediction m^{*}_n>m^{*}_p

Many-Body Effects on

Fermi sphere In CM frame

$$\Delta \mathbf{p} = 2\mathbf{p}_{\mathrm{F}}\sin\left(\frac{\theta}{2}\right) > 0$$

backward and forward scatterings sizably suppressed

In Medium Cross Sections

neutron matter

like particles

$$\sigma_{nn}(\vartheta) \sim \frac{m^{*2}}{16\pi^2\hbar^4} \sum_{SS_zS_z^{'}} |\langle p | G^{S}_{S_zS_z^{'}}(\vartheta) | p' \rangle + (-)^{S} \langle p | G^{S}_{S_zS_z^{'}}(\pi - \vartheta) | p' \rangle|^2$$

unlike particles

$$\sigma_{np}(\vartheta) \sim \frac{m^{*2}}{4\pi^2 \hbar^4} \sum_{SS_z S_z'} |\langle p | G^S_{S_z S_z'}(\vartheta) | p' \rangle|^2$$

In Medium Cross Sections

$\sigma(\Omega) = N_0^2 | \langle q | V_{nn}^{(2)} | q \rangle^2 \Longrightarrow N^2 | \langle q | G_{nn}^{(2+3)} | q \rangle^2$

FIG. 3: (color online). Upper panel: nn differential cross sections in pure neutron matter (left) nn differential cross section in pure neutron matter, symmetric and β -stable nuclear matter (right). Lower panel np differential cross section in pure neutron matter, symmetric and β -stable nuclear matter. The free cross section is also plotted for comparison.

Transport Parameters

Collaboration:

PHYSICAL REVIEW C 82, 015805 (2010)

Transport parameters in neutron stars from in-medium NN cross sections

H. F. Zhang,¹ U. Lombardo,² and W. Zuo³

 ¹School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China ²Dipartimento di Fisica and INFN-LNS, Via S. Sofia 64, I-95123 Catania, Italy
 ³Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China (Received 7 April 2010; revised manuscript received 15 June 2010; published 15 July 2010)

transport equations

heat conduction

$$\frac{2}{3}\rho\left(\frac{\partial}{\partial t}+u\cdot\nabla\right)\theta = -\rho(\nabla\cdot u)\theta + K\Delta\theta$$

Cross Sections in β -stable matter

ANM with
$$\beta = \beta$$
 (ρ)

$$p + e^- \rightarrow n + V_e$$

 $n \rightarrow p + e^- + V_e$

nn collisions

np collisions

non linear behaviour of proton mean field and effective mass

shear viscosity

$$\eta T^{2} = \frac{1}{20} \rho v_{F}^{2} C(\lambda) \int_{0}^{4\varepsilon_{F}} \frac{dE}{2\varepsilon_{F}} \int_{0}^{2\pi} \frac{d\vartheta}{2\pi} 1 - E / 4\varepsilon_{F}^{-\frac{1}{2}} \sigma(E, \vartheta)$$

Shternin & Yakovlev PRD(2008), APR Benhar & Carbone, arXiv09112.0129,CBF

 $\begin{array}{l} \sigma_o(\Omega) \to \sigma(\Omega) \,:\, \eta {\sim} 10{\cdot}\eta_0 \;\; Flowers \,\& \, Itoh, ApJ \; (1979) \\ isospin \; effect: \; \eta(proton) \to \eta(neutron) \; at \; higher \; density \\ m \to \; m^*: \; \eta_n >> \; \eta_e \; Shternin \,\& \; Yakovlev \; PRD(2008) \end{array}$

→ no r-mode damping

thermal conductivity

t (yr)

Yakovlev et al, Phys.Reports 354 (2001) 1

Dissipation of r-modes

velocity perturbation:
$$\delta \vec{v} \sim R \Omega \left(\frac{r}{R}\right)^m \vec{Y}_{mm} e^{i\omega t}$$

collective energy:
$$E = \frac{1}{2} \int dV \rho |\delta \vec{v}|^2$$

dissipation time scale:

$$\frac{1}{\tau} = -\frac{1}{\tau_{GR}} + \frac{1}{\tau_{v}} = -\frac{1}{2E} \frac{dE}{dt} = -\left(\frac{1}{2E} \frac{dE}{dt}\right)_{GR} - \left(\frac{1}{2E} \frac{dE}{dt}\right)_{v}$$

 $\Omega \sim 1000 \text{ Hz} \rightarrow \tau_{GR} \sim 100 \text{ sec}$ (depending only on rotation)

Time scale of nonradial modes damping from shear viscosity

constant mass approximation

$$\frac{1}{t_{V}} = l - 1 \quad 2l + 1 \quad \frac{\eta}{\rho R^{2}} \qquad \rho = \frac{M_{\odot}}{\frac{4\pi}{3}R^{3}} = const$$

M-R in NS stable configurations from TOV eqs constant density approximation: $\rho = M/(4\pi/3 R^3)$

${\rm M/M}_{\odot}$	R(Km)	$ ho(\mathrm{g/cm^3}){ imes}10^{14}$	t_V (s)
0.8	12.8	1.8	1865
1.4	12.5	3.4	1680
1.8	12.2	4.7	883
2.3	11.0	8.25	317

t _k (s)
0.54 10 ¹⁶
1.5 10 ¹⁶
3.0 10 ¹⁵
6.0 10 ¹⁵

thermal cond.

Conclusions

- Brueckner theory provides a unified treatment of equilibrium and transport properties of nuclear matter
- □ The medium effects in the $\sigma_{NN}(\Omega)$ were calculated within the BHF+3BF theory, showing that Pauli principle mainly suppress the forward and backward angles whereas the mass renormalization plays the most important role
- Transport parameters, shear viscosity and thermal conductivity were calculate in different configuations of nuclear matter, including beta-stable nuclear matter and neutron stars
- Preliminary estimates of the time scale for the neutron viscosity damping of nonradial modes is comparable with the gravitational radiation damping

Chandrasekhar Instability (1970)

 Y_{22} - nonradial mode: $v \sim \omega_0$ (Coriolis force)

Inertial frame

$\omega_0 - \omega_{22} >> 0$

 $Y_{22}\,$ is a source of gravitational radiations, that $\,$ extract $\Delta L_0\,$ and the star spins down

Corotating frame

 $\omega_{22} < 0$ L₂₂ is increasingly negative \rightarrow large frequency and amplitude osc.

The amount of gravitational radiations is increasingly large (expected to be detected in terrestrial labs (LIGO,VIRGO,...)

interplay between GR driving instability and viscosity damping **Critical velocity**:

$$\frac{1}{\tau_{GR}(\omega_c)} + \frac{1}{\tau_V(\omega_c)} = 0$$

The critical frequency gives an upper limit to the observed stars

Astrophysical Implications

<u>Scenario A</u>

- a) NS from progenitor gravitational collaps high Ω and T (≥ 10 MeV)
- b) r-modes are driven unstable by GR ($\Omega > \Omega c$) low Ω and T (≤ 0.1 MeV)
- c) NS gets stable at $\Omega = \Omega c$

Observation: no rapidly rotating NS in young supernovae remnants

<u>Scenario B</u>

- a) NS accreting in a binary system low Ω and low T (≤ 0.01 MeV)
- b) Viscous dissipation of growing r-modes until viscous heating ~ neutrino cooling Ω =const T \rightarrow 0.1 MeV
- c) GR spin down

 $\Omega \rightarrow \Omega c T=const$

Observation: narrow frequency range in low mass x-ray binarues

World Network of G.W. Detectors

