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Motivation

gravitational radiation emitted by r-modes in rapidly rotating

neutron stars drives the instability of the system 

(Chandrasekhar 1970 )

Which dissipation mechanism tend to suppress this instability?

A good candidate is the shear viscosity

Which constituent of NS mainly contribute to the viscosity ?

neutrons, leptons, hyperons, quarks,…   

This is a preliminary investigation



ab initio Calculations from Brueckner theory

Input: Bare Interaction VNN  (OBEP)

N
,N*

2BF 3BF
Fujita-Mihiazawa

Dirac sea
excitations

Output: In-medium Interaction : GNN

fit of experimental NN phase shifts

= +G GV V

zero density -> NN scattering amplitude 



Properties of G-matrix:

 EoS of Nuclear Matter   E=E(ρ,T)    

 Symmetry energy Esym(ρ,T) 

 MD mean field → effective masses m*p and m*n

 in-medium NN scattering amplitude

providing a unified framework where to study equilibrium
and transport properties of nuclear matter

Equilibrium : HJ Schulze talk



EoS of Nuclear Matter
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nucleons,hyperons, kaons, quarks  

in beta-equilibrium with leptons

Any new degree of freedom makes the EoS to be softer and the maximum

mass turns out to be lowered

 beta-equilibrium with electrons and muons :   p + e¯ n + 

 hyperonized matter: n + n n + ( p + ¯) at     > 2 o

 kaon condensation n p +  K¯ at  > 2-3 o

 transition to quark matter HP QP (u,d,s)               at     ~ 6 o

NS internal structure 
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baryons are in weak-coupling  with  

leptons (electrons,muons,…)
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Gravitation vs Nuclear force: a new game

Tolman-Oppenheimer-Volkov (TOV) and nuclear EoS

Input Equation of State P=P( , p)

Output Mass-Radius plot



( ' ' ' ')
iji

i p i i p i i j i j i j i j i j

j med

df
f f I f f f f f f f f

t d

2 2
'

*
' '

' | | '
2 2

f

p a

p p

p p
pp G pp U

m m

Transport  Kinetic Equations
-----multicomponent system-----

medium effects:

Pauli blocking: nucleons scatter into unoccupied states

Strong mean field between  two collisions

Compression of the level densities in entry and exit chennels

gain loss
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Mean field and Effective Mass 

empirical OMP data support the

prediction m*n>m*p



Many-Body Effects on 

--------------------------Finite Range Interaction---------------------------
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p-dependent potential
level density:

---------------------------Pauli blocking-----------------------------------------

θ

pF

Fermi sphere

In CM frame

Δp = 2pF sin (θ/2)  >  0 

backward and forward scatterings  sizably suppressed 
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In Medium Cross Sections
neutron matter

nuclear matter

like particles

unlike particles
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In Medium Cross Sections
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Transport Parameters

Collaboration:



transport equations
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(K  thermal conductivity)

bulk and shear viscosity
Navier-Stokes Eq.

heat conduction

grad T

A

heat flux

compression modes

http://en.wikipedia.org/wiki/File:Laminar_shear.svg


Cross Sections in  β-stable matter

p +  e¯ n + e

n p + e¯ + e

ANM with β = β (ρ)

non linear behaviour of proton mean field and effective mass

nn collisions np collisions



shear viscosity

σo(Ω) → σ(Ω) : η~10·η0   Flowers & Itoh, ApJ (1979)

isospin effect: η(proton) → η(neutron) at higher density

m → m* : ηn >> ηe Shternin & Yakovlev PRD(2008)
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no r-mode damping



thermal conductivity

NS Cooling 
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Dissipation of r-modes

velocity perturbation:
m
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dissipation time scale:

Ω~1000 Hz  →  τGR ~ 100 sec (depending only on rotation)



Time scale of nonradial modes damping

from shear viscosity 

M-R in NS stable configurations from TOV eqs

constant density approximation: ρ = M/(4π/3 R3)
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Conclusions

 Brueckner theory provides a unified treatment of equilibrium and 

transport properties of nuclear matter

 The medium effects in the σNN(Ω) were calculated  within the 

BHF+3BF theory, showing that 

Pauli principle mainly suppress the forward and backward angles

whereas the mass renormalization plays the most important role

 Transport parameters, shear viscosity and thermal conductivity

were calculate in different configuations of nuclear matter, including

beta-stable nuclear matter and neutron stars

 Preliminary estimates of the time scale for the neutron viscosity 

damping of  nonradial modes is comparable with the gravitational 

radiation  damping



Chandrasekhar Instability (1970)

Y22 - nonradial mode: ~ ω0       (Coriolis force)

Inertial frame

Corotating frame

ω22 < 0
L22 is increasingly negative  large frequency and amplitude osc.

The amount of gravitational radiations is increasingly large

(expected to be detected in terrestrial labs (  LIGO,VIRGO,…)  
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ω0 – ω22 >> 0

Y22 is a source of gravitational radiations, that  extract  ΔL0

and the star spins down

interplay between GR driving instability and viscosity damping 

Critical velocity:



Astrophysical Implications
Lindblom 2000
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The critical frequency gives an upper limit to the observed stars 



Astrophysical Implications
Lindblom 2000

Scenario A

a) NS from progenitor gravitational collaps

high Ω and T (≥ 10 MeV)

b) r-modes are driven unstable by GR (Ω> Ωc)

low Ω and T  (≤ 0.1 MeV)

c) NS gets stable at  Ω= Ωc

Observation: no rapidly rotating NS in young

supernovae remnants

Scenario B

a)  NS accreting in a binary system

low Ω and low T (≤ 0.01 MeV)

b) Viscous dissipation of growing r-modes

until viscous heating ~ neutrino cooling

Ω=const  T→ 0.1 MeV

c) GR spin down

Ω →  Ωc  T=const

Observation: narrow frequency range in

low mass x-ray binarues



World Network of G.W. Detectors


