# The systematic dependence of $E(2_1^+)$ on $N_pN_n$ , $N_B$ and p-factor for A=120-200 mass region nuclei

Vidya Devi<sup>\*</sup> and H.M. Mittal

<sup>1</sup>Dr B. R. Ambedkar, National Institute of Technology Jalandhar-144011, INDIA

### Abstract

The systematic dependence of energy  $E(2_1^+)$  and energy ratio  $R_{4/2}(=E(4_1^+)/E(2_1^+))$  on neutron number (N), number of valence proton and valence neutron  $(N_pN_n)$ , total boson number  $(N_B)$  and p-factor  $(p = \frac{N_pN_n}{N_p+N_n})$  for A=120-200 mass region nuclei. The whole data is divided into four quadrants (Q). The first quadrant (Q-I) of N > 82 is of Z=50-82,  $82 \le N < 104$  shell space with particle like proton-bosons and neutron-bosons forming the p-p space. Second quadrant (Q-II) of  $82 \le N \le 104$  is of Z=50-82 shell space, with hole like proton-bosons space and particle like neutron-bosons space forming the h-p space. Third quadrant (Q-III) of  $104 \le N < 126$  of Z=50-82 shell space, with hole like proton-bosons and neutron-bosons forming h-h space. The fourth quadrant (Q-IV) of N < 82 of Z=50-82 shell space with particle like proton-bosons and hole like neutron-bosons forming the p-h space. In brief, quadrant I and III for p-p and h-h bosons space, and II, IV for p-h and h-p bosons space respectively. A simple exponential dependence of  $E(2_1^+)$  and a smooth variation of  $R_{4/2}$  on N,  $N_pN_n$ ,  $N_B$  and p-factor is obtained.

#### Introduction

he study of the collective nuclear structure with the neutron number N, and proton number Z, total

<sup>\*</sup>Electronic address: vidyathakur@yahoo.co.in

boson number  $N_B = N_p + N_n$  where the  $N_p$  be the valence proton number and  $N_n$  is valence neutron number. The product of  $N_pN_n$  gives the understanding of the nuclear interactions involved. The important role of the  $N_pN_n$  early was discussed by the de-Shalit and Goldhaber [1]. Hamamoto [2] first pointed out that the square roots of the ratios of measured and the single particle B(E2) values was proportional to the  $N_pN_n$ . Casten [3] used the  $N_pN_n$  product to study the nuclear structure of the excited states  $(E(2_1^+))$  in very simple pattern. Casten et al. [4] presented a review on the evaluation of the nuclear structure on the bases of  $N_pN_n$  product, this phenomenon has been to be called the  $N_pN_n$  scheme. Gupta et al. [5] presented a systematics dependence of  $\gamma$ -g B(E2) ratios on the  $N_pN_n$  product in the different parts of the major shell space Z=50-82, N=82-126 and demonstrated that the interband B(E2) ratios were smooth function of  $N_pN_n$ . Further, Gupta et al. [6] pointed that the limitations of F-spin and  $N_pN_n$  scheme in reproducing the overall  $E(2_1^+)$  systematic in major shell space Z=50-82, N=82-126 into four quadrants. Recently most work related to  $N_pN_n$  scheme mainly concentrate on p-factor that is define as  $p = \frac{N_pN_n}{(N_p+N_n)}$  [4], and  $\beta_2$  [7–9], systematic law of  $E(2_1^+)$  for heavy nuclei [10]. The systematic energy of first (2\_1^+) of all even-even nuclei and odd-even staggering [11, 12].

In present work we focus on the systematics dependence of energy of the first  $2_1^+$  state of ground band on  $N_p N_n$ ,  $N_B$  and p-factor in even-even nuclei for Z=50-82 and N=82-126 regions by dividing the whole space in four quadrants. The experimental data are taken from ref [13].

#### I. RESULT AND DISCUSSION

Gupta et al. [14] grouped the A=120-200 nuclei into four quadrants. First quadrant (Q-I) of  $82 \le N$  <104 is of Z=50-82 shell space, with particle like proton-bosons and hole like neutron-bosons forming the p-p subspace. Second quadrant (Q-II) with hole like proton-bosons and particle like neutron-bosons forming the h-p subspace. The third quadrant (Q-III) of  $104 \le N < 126$  of Z=50-82 shell space, with hole like proton - bosons and hole like neutron-bosons forming the h-h subspace. The third quadrant (Q-III) of  $104 \le N < 126$  of Z=50-82 shell space, with hole like proton - bosons and hole like neutron-bosons forming the h-h subspace.

neutron-bosons forming the p-h subspace. In brief, quadrant I and III for p-p and h-h bosons space, and II, IV for p-h and h-p bosons space respectively. A simple exponential dependence of  $E(2^+_1)$  and a smooth variation of  $R_{4/2}$  on N,  $N_p N_n$ ,  $N_B$  and p-factor is obtained. In Fig. 1 for Q-IV (N < 82) region we see the variation between  $E(2_1^+)$  and  $N_B$ ,  $N_pN_n$ , p-factor. The graph of  $E(2_1^+)$  vs  $N_B$  data of same Z linked (N < 82) at N=78-80. The energy  $E(2_1^+)$  decrease constantly, with increasing  $N_B$  (and  $N_n$ ) and nuclei get deformed. But there is no constancy with  $N_B$ , for same  $N_B$  (any value) the  $E(2_1^+)$  varies by large amount e.g. even at  $N_B = 9$ ,  $E(2_1^+)$  varies 0.25-0.50. Similarly for  $N_B = 8$  the spread in  $E(2_1^+)$ =100 keV. Next same data is plotted for  $N_p N_n$  in this case the horizontal spread is much less, but for any  $N_p N_n$  vertical spread is large. As for  $N_B$ , similarly for  $N_p N_n$ ,  $E(2^+_1)$  decrease (definitely increase with increase  $N_p N_n$  collectivity). Since the number of n-n, p-p and n-p interactions depend on the product  $N_p N_n$  and the deformation of the nucleus may also depend on this product. The dependence on  $N_p N_n$ is better viewed on a graphical plot. The  $E(2_1^+)$  values do decrease linearly with the increase in  $N_p N_n$ . The collectivity is surely dependent on the number of bosons or the product  $N_p N_n$  but for small  $N_p$  or  $N_n$ , the collectivity does not build up, so that the proportionality to  $N_B$  or  $N_p N_n$  product is not fully attained. For same  $N_p N_n$  the higher Z (having lesser  $N_n$ ) datum lies higher (less deformed), exhibiting greater effect of  $N_n$  here. We also see the variation of  $E(2_1^+)$  with  $p = N_p N_n / (N_p + N_n)$ . It is evident that a number dependence on  $N_B$  or  $N_p N_n$  works better when both numbers  $N_p$  and  $N_n$  are more than 3 or 4. For p-factor vertical spread is less all data is closer along a single slope line. In Fig. 2 we see the behavior of Q-I (N > 82) region. When  $E(2_1^+)$  is plotted against  $N_B$ ,  $N_p N_n$  and p-factor then is shows falls and constant trend. The increase in the value of  $N_p N_n$  and p-factor the collectivity is increases and energy get decreased. The advent of the sd- Interacting Boson Model, IBM-1 led to the U(6) algebra and its dynamic subgroups of SU(5), SU(3) and O(6), and the assumption of F-spin invariance in the F-spin space. This led to the concept of F-spin and recognition of some F-spin multiplets of  $N_B = 11$ , 12 (F=5.5 and 6).

The values of  $E(2_1^+)$  vary quite fast to the constant  $N_B$  or fixed F-spin. For N < 104 firstly graph is

plotted between  $E(2_1^+)$  vs.  $N_B$  (see in Fig. 3). For  $N_B \ge 11$  data of various Z overlap, vertical spread is small. So we get F-spin  $=N_B/2$  identical band multiplets. The overlap increases much and spreading is decreases. Next same data is plotted against  $N_pN_n$  in which  $E(2_1^+)$  decreases with  $N_pN_n$ . In <sup>160</sup>Er -<sup>180</sup>Os case, <sup>160</sup>Er and <sup>168</sup>Hf have  $N_pN_n=(14,10)$  and (10,14), respectively. So that  $N_pN_n$  =140 and  $F_0 = 1$  in both cases. It suggested in that such  $(F_0, N_p, N_n)$  pairs should be similar in structure. Next the same data is also plotted against the p-factor. In this plot the spread is very small and all data is closer along single line because the value of p-factor is large in N < 104 region hence this larger value of p-factor condenses the x-scale more to bring together.

Due to which the value of  $E(2_1^+)$  get more close and more saturated. Hence identical bands with respect to the  $N_B$ ,  $N_pN_n$  or p-factor is observed in N < 104 mass region. Similarly in case of  $N \ge 104$ region, when graph is plotted between  $E(2_1^+)$  and  $N_B$  (see Fig. 4). The energy graph not show any saturation, and more spreading take place, hence  $E(2_1^+)$  decreases constantly with  $N_B$ . The  $E(2_1^+)$  shows more variation with  $N_B$ . Next same data is plotted for  $N_pN_n$  in as the  $N_B$ , similarly as that of  $N_B$ the  $E(2_1^+)$  decreases with increasing the  $N_pN_n$  collectivity ( $N_p$  constant  $N_n$  increases). There is small spread in both horizontal as well as vertical side. Therefore with increasing the  $N_pN_n$  more decrease in the value of  $E(2_1^+)$  energy and saturation is attain.

Next the variation with p-factor all data are located in one single line, with increasing the p-factor it condenses the x-scale due to which the data become closer to each other. The Pt nuclei show more fall with the p-factor, it reduces 0.5 to 0.1 MeV.The present study reflects the systematic behavior of  $E(2_1^+)$ energy with  $N_p N_n$ ,  $N_B$  and p-factor. An exponential law of energy value of  $2_1^+$  ground state is shown to be applicable to all three regions i.e. (p-p), (h-p) and (h-h) but (p-h) space is empty.

## References

- [1] A. de-Shalit and M. Goldhaber, *Phys. Rev.* **92**, 1211 (1953).
- [2] I. Hamamoto, Nucl. Phys. A 73, 225 (1965).
- [3] R. F. Casten, Nucl. Phys. A 443, 1 (1985).
- [4] R. F. Casten, N. V. Zamfir, J. Phys. G (Nucl. Part. Phys.) 22, 1521 (1996).
- [5] J. B. Gupta, J. H. Hamilton and R. V. Ramayya, Phys. Rev. C42, 1373 (1990).
- [6] J. B. Gupta, H. M. Mittal, J. H. Hamilton and R. V. Ramayya, Int. J. Mod. Phys. 5, 1155 (1990).
- [7] Y. M. Zhao, R. F. Casten and A. Arima, Phys. Rev. Lett. 85, 720 (2000).
- [8] Y. M. Zhao, R. F. Casten and A. Arima, Phys. Rev. C 63, 067302 (2001).
- [9] S. Q. Zang, S. G Zhou and F. R. Xu, *High Rnergy Phys. Nucl. Phys.* 28 516 (2004).
- [10] FAn Zhe-Yong, REN Zhong-Zhou and Xu Chang, Chin. Phys. Lett. 24 2555 (2007).
- [11] Jin-Hee Yoon, Eunja Ha and Dangwoo Cha, J. Phys. G (Nucl. Part. Phys.) 34, 2545 (2007).
- [12] Guanghao Jin, Jin-Hee Yoon and Dangwoo Cha, J. Phys. G (Nucl. Part. Phys.) 35, 035105 (2008).
- [13] http:// www.bnl.nndc.gov / nsdf.
- [14] J. H. Hamiltonian, A. V. ARmayya and J. B. Gupa, Bull. Am. Phys. Sco. 32, 2130 (1987)



FIG. 1: Variation of  $E(2_1^+)$  vs. $N_B N_p N_n$  and p-factor in N < 82 region.



FIG. 2: Variation of  $E(2_1^+)$  vs. $N_B N_p N_n$  and p-factor in N > 82 region



FIG. 3: Variation of  $E(2_1^+)$  vs. $N_B N_p N_n$  and p-factor in N < 104 region



FIG. 4: Variation of  $E(2_1^+)$  vs. $N_B N_p N_n$  and p-factor in N > 104 region