Probing the nuclear symmetry energy at supra-saturation densities

Bao-An Li1, Lie-Wen Chen1,2, Che Ming Ko3 and Chang Xu1,4

1Department of Physics and Astronomy, Texas A\&M University-Commerce, Commerce, Texas 75429-3011, USA
2Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China
3Cyclotron Institute and Department of Physics and Astronomy, Texas A\&M University, College Station, TX 77843-3366, USA
4Department of Physics, Nanjing University, Nanjing 210008, China

In this talk we will try to address the following three questions if at all possible:

- Why is the nuclear symmetry energy so uncertain at supra-saturation densities?
- Why do we care about it?
- How can we constrain it?

Using the Hugenholtz-Van Hove theorem and the interacting Fermi gas model of isospin asymmetric nuclear matter, the nuclear symmetry energy can be expressed in terms of isoscalar and isovector single-nucleon potentials. This analytical relation allows us to study in a transparent way effects of the in-medium three-body interaction and the two-body short-range tensor force due to the \(\rho \) meson exchange as well as the short-range nucleon correlation on the high-density behavior of the nuclear symmetry energy can be demonstrated respectively. Possible physics origins of the extremely uncertain nuclear symmetry energy at supra-saturation densities will be discussed. Some ramifications of the different high density behaviors of the symmetry energy will be briefly discussed. Finally we examine a few promising experimental probes of the nuclear symmetry energy at supra-saturation densities.