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Phase transitions in dilute 
stellar matter



Motivation: study of 
dishomogeneous phases in PNS 
crusts and supernova cores. 

Influence on the explosion dynamics 
and the PNS cooling via:
• electron capture rates Janka et al PR442 (2007)

• neutrino opacity H.Sonoda PRC75(2007)

• heat capacity D.Page NPA777(2006)
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Dilute stellar matter at T>0  
� Standard treatment in supernova codes: statistical equilibrium of 

n,p,α,1 heavy cluster + 1st order phase transition to uniform matter
Lattimer-Swesty EOS, Shen EOS

� Improvement: non-interacting ideal-gas of nuclei (NSE) R.S.Souza et al  

Astrophys.J.707:1495-1505,2009 A.Botvina et al Nucl. Phys. A:98-132,2010 S.I.Blinnikov et al 0904.3849

� Missing physics: in medium corrections,
inter-particle interactions
� Interactions in the S matrix formalism

S.K.Samaddar et al. Phys.Rev.C80:035803,2009

� Virial EOS A<5 A.Schwenk et al. 
Phys.Rev.C78:015806,2008

� Quasi-particle gas model 
Skyrme+A<14 S.Heckel et al Phys.Rev.C80:015805,2009  
RMF+A<4 S.Typel et al Phys.Rev.C81:015803,2010  

� Phenomenological models
M.Hempel et al., astro-ph/0911.4073

A.Botvina I.Mishustin PRC 2005 & NPA 2010



Dilute matter at T>0: the phenomenology
of the crust-core transition

Nuclei in the 
outer crust

Homogeneous
matter in the core

Neutron (proton) 
drip in the inner crust
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+ electrons ρe=ρp, γ,ν



An hybrid model for the crust-
core transition

Neutron (proton) 
drip in the inner crust

Homogeneous
matter in the core

Finite temperature Hartree F
with Skyrme interactions (SK
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Nuclei in the 
outer crust



Thermodynamics of homogeneous
matter in the MF approximation

Coexistence of purely
homogeneous NM

Spinodal of purely
homogeneous NM

=> Homogeneous matter is unstable over a wide μ,T region

LIQUID
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An hybrid model for the crust-
core transition

Neutron (proton) 
drip in the inner crust

Nuclei in the 
outer crust

Statistical ensemble of 
interacting excited clusters 

+ electrons ρe=ρp, γ,ν

Homogeneous
matter in the core

Finite temperature Hartree Fock
with Skyrme interactions (SKM*, Sly230a)



Statistical ensemble of 
interacting excited clusters

� Standard NSE
/ Statistical independence at the classical level
/ Non-interacting
☺ Analytical calculations

� This work
☺ Exact quantum counting
☺ Coulomb interaction + excluded volume
/ Expensive MC calculations
/ Convergence to be checked
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Thermodynamics of clusterized and 
unclusterized matter

Coexistence of purely
homogeneous NM

Spinodal of purely
homogeneous NM

Coexistence of purely
clusterized NM

Trajectories of purely
clusterized NM

=> The mean-field instabilities are cured by cluster formation

GAS

LIQUID



Nuclei in the 
outer crust

Statistical ensemble of 
interacting excited clusters 

An hybrid model for the crust-
core transition

Neutron (proton) 
drip in the inner crust

Homogeneous
matter in the core

Finite temperature Hartree Fock
with Skyrme interactions (Sly230a)

the two components togeth

+ electrons ρe=ρp, γ,ν



Phase mixture versus phase 
coexistence

� Mixture 
(ex:atmosphere)

� Coexistence
(ex: Solid-Liquid)
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=> Continuous EOS => jump in observables

dishomogeneities on a 
macroscopic scale

dishomogeneities on a 
microscopic scale

(Gibbs construction)
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No first order transition in dilute
stellar matter

� Does not correspond to the 
physical structure of the crust
(microscopic fluctuations)

A first order crust-core transition (e.g. Lattimer-Swesty, Shen, etc.)
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No first order transition in dilute
stellar matter

� Does not correspond to the 
physical structure of the crust
(microscopic fluctuations)

� Gives no entropy gain

A first order crust-core transition (e.g. Lattimer-Swesty, Shen, etc.)
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No first order transition in dilute
stellar matter

� Does not correspond to the 
physical structure of the crust
(microscopic fluctuations)

� Gives no entropy gain

� Ignores electron
incompressibility!!!
(transition quenched

because
=> concave entropy)

A first order crust-core transition (e.g. Lattimer-Swesty, Shen, etc.)

/e e GeVμ ρ∂ ∂ ≈
with electrons
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No first order transition in dilute
stellar matter

A first order crust-core transition (e.g. Lattimer-Swesty, Shen, etc.)

/e e GeVμ ρ∂ ∂ ≈

Produces artificial discontinuities
(problem with SN codes)

� Does not correspond to the 
physical structure of the crust
(microscopic fluctuations)

� Gives no entropy gain

� Ignores electron
incompressibility!!!
(transition quenched

because
=> concave entropy)

�



Crust composition: 
cluster contribution

Lines: this work
Symbols: LS EOS

•Decreasing cluster size 
with increasing
temperature

•Clusters still important 
at T=10 MeV

T=1.6

T=5

T=10



Entropy density
Symbols: LS EOS 
Thick Lines: this work
Thin lines: clusters excluded

Differences with LS at high temperature even in the total entropy,
due to the presence of clusters



Pressure
Lines: this work
Symbols: LS EOS

Differences with LS at high density, due to the absence of a 
first order transition



Density and pressure at the crust-
core transition

� Crustal fraction of the 
moment of inertia

� Can be measured from
pulsar glitches

� Puts constraints on the NS 
radius; ex: Vela pulsar

� Transition naturally
obtained ! 

J.M. Lattimer and M. Prakash, Phys. Rep. 442, 109 (2007).
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Conclusion

� Specific thermodynamics for the 
dilute matter in NS crusts and SN 
cores

� Model-independent conclusion: no 
first-order phase transition 

� Illustration within an improved NSE  
model combining nuclear matter
properties and all-sized clusters 





Neutron versus proton drip

� Proton drip is
negligible at low
temperature

� Increases at high
temperature, but 
much less than in 
LS   

Lines: this work
Symbols: LS EOS



Neutrino opacity

� xν percentage of trapped
neutrinos in β equilibrium

� Determines the leptonization
rate => the size of the 
homologous core

� Similar results to MF 
calculation with the same
effective interaction

C.Ducoin et al, NPA2007
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Neutrino opacity
� xν percentage of trapped

neutrinos
� Determines the leptonization

rate => the size of the 
homologous core

� Similar results to MF 
calculation with the same
effective interaction

� Can be correlated to the size 
of the clusters and number of 
free protons

A.Raduta, F.G., to be published



Opacity to neutrinos



Chemical potentials
Symbols: LS EOS 
Thick Lines: this work
Thin lines: clusters excluded



Energy density
Symbols: LS EOS 
Thick Lines: this work
Thin lines: clusters excluded



The order of the  crust-core
transition 

10 20nT MeV MeVμ= = −

μp

P

•First order Φ transition: 

Clusters

HM
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The order of the  crust-core
transition 

10 20nT MeV MeVμ= = −

μp

P

•First order Φ transition: 

To clusterized matter
To Homogeneous Matter again

Through a coexistence point

•Mixture:
Continuous EOS maximising
the same entropy

Clusters

HM

discontinuous change from HM


