

Symmetry Energy in Nuclei

Outline:

- 1. Nuclear symmetry energy
- 2. Two universal densities
- 3. Half-infinite Matter
 - a) Solution of Skyrme-Hartree-Fock Equations
 - b) Correlations of Symmetry Coefficients & S(p)
- 4. $a_a(A)$ from Isobaric Analog States
 - a) Use of Charge Invariance
 - b) Data Analysis & Interpretation
- 5. Validity of the employed procedures ?
- 6. Constraints of $S(\rho)$ from structure and reactions
- 7. Summary & Outlook

Pawel Danielewicz¹ & Jenny Lee^{1,2}

¹NSCL, MSU ²RIKEN , Nishina Center

NuSYM10, RIKEN, Japan July 26-28, 2010

Nuclear Symmetry Energy

In nuclear matter : $\delta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p} = \frac{N - Z}{A}$

Quadratic under $n \leftrightarrow p$ *symmetry*

$$\frac{E}{A}(\rho,\delta) = \frac{E}{A}(\rho,0) + \frac{E}{A}(\delta) \cong \frac{E}{A}(\rho,0) + \frac{S(\rho)}{\delta}\delta^{2}$$
Symmetry energy

Expanded around normal density ρ_0 *:*

$$S(\rho) = a_a^v + \frac{L}{3} \frac{\rho - \rho_0}{\rho_0} + \frac{K_{sym}}{18} (\frac{\rho - \rho_0}{\rho_0})^2 + \dots$$

In neutron matter (<u>neutron star</u> $\delta \approx 1$): $E \approx E_0 + S$ $P \cong \rho^2 dS / d\rho \cong L\rho^2 / (3\rho_0)$

Physics of symmetry energy									
✓ masses									
✓ radii of n	✓ radii of n-rich nuclei								
✓ n-skin of heavy nuclei (e.g. 208 Pb)									
✓									
\checkmark neutron star properties									
✓ supernova phenomena									
208Pb	Neutron Star								
~10 ⁻¹⁵ m	~104 m								

EOS: symmetric matter and neutron matter

 $E_0(\rho_0) = -a_v = -16 MeV$ Well constrained for the symmetric matter

- The density dependence of symmetry energy is largely unconstrained
- Directions of the density dependence diverge at high densities

Neutrons & Protons in Nucleus

Nuclear Energy $E = -a_{v}A + a_{s}A^{2/3} + \frac{a_{a}}{A}(N-Z)^{2}$ $= E_{0}(A) + \frac{a_{a}(A)}{A}(N-Z)^{2}$ Asymmetry chemical potential $\mu_{a} = \frac{\partial E}{\partial (N-Z)} = \frac{1}{2}(\mu_{n} - \mu_{p})$ $= \frac{2a_{a}(A)}{A}(N-Z)$

Charge symmetry

Isoscalar density $\rho(\mathbf{r}) = \rho_n(\mathbf{r}) + \rho_p(\mathbf{r})$

Isovector density $\rho_a(r) = \frac{2a_a^V}{\mu_a} [\rho_n(r) - \rho_p(r)]$

both $\rho(\mathbf{r}) \& \rho_a(\mathbf{r})$ have universal feature $\rightarrow \underline{weakly}$ depend on $\eta = (N-Z)/A$!

In any nucleus:

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$
Isoscalar Isovector density

Universal Nuclear Densities

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

Net isoscalar density usually parameterized w/Fermi function

$$\rho(r) = rac{
ho_0}{1 + \exp(rac{r-R}{d})} \qquad R = r_0 A^{1/3}$$

Isovector density ρ_a ?? Related to $a_a(A)$ & to $S(\rho)$!!

$$\frac{A}{a_a(A)} = \frac{2(N-Z)}{\mu_a} = 2 \int \mathrm{d}r \, \frac{\rho_{np}}{\mu_a} = \frac{1}{a_a^V} \int \mathrm{d}r \, \rho_a(r)$$

In uniform matter:

$$\mu_{a} = \frac{\partial E}{\partial (N - Z)} = \frac{2 S(\rho)}{\rho} \rho_{np} \qquad \qquad \rho_{a} = \frac{2 a_{a}^{V}}{\mu_{a}} \rho_{np} = \frac{a_{a}^{V} \rho}{S(\rho)}$$

✓ Both n & p densities carry record of $S(\rho)$ → <u>Hartree-Fock study of the surface</u>

✓ Mass formula: $a_a = 21 \text{MeV}$; mass dependent $a_a(A)$?? – simplest nuclear system w/ a surface → <u>Half-infinite matter</u>

Half-Infinite Matter in Skyrme-Hartree-Fock

Direction of non-uniformity (z-axis); vacuum (+z) & infinite uniform matter (-z)

Discretization in k-space.

Set of 1D HF equations solved until self-consistency for different Skyrme interactions:

$$-\frac{\mathrm{d}}{\mathrm{d}z}\frac{\hbar^2}{2m^*(z)}\frac{\mathrm{d}}{\mathrm{d}z}\phi(z) + \left(\frac{\hbar^2\,k_{\perp}^2}{2m^*(z)} + U(z)\right)\phi(z) = \epsilon(\mathbf{k})\,\phi(z)$$

P. Danielewicz & J. Lee, NPA 818, 36 (2009)

Isoscalar (Net) & Isovector Densities

> Isovector density ρ_a changes significantly with interactions

Within matter, densities are fairly close to each other

> Surface - difference is strongly correlated to the L-value – higher $L \rightarrow$ farther out ρ_a displaced relative to ρ

 \triangleright Both isoscalar and isovector densities change little with asymmetry η $\succ \rho \& \rho_a$ with universal features \rightarrow fundamental quantities in our framework !

P. Danielewicz & J. Lee, NPA 818, 36 (2009)

Sensitivity to S(p)

- S NSCL
- Uniform matter $\rho_a = \rho a_a^V / S(\rho)$ \rightarrow also valid for weakly non-uniform matter (short-range of nuclear interactions)
- Isovector density ρ_a follows the local approximation down to $\rho \simeq \rho_0/4$
 - The more different between $\rho_a \& \rho$: • higher L

• lower S(p) in the surface

50 Skyrme L(MeV) -50 10 1Sk9 70 SkI5 129 (MeV)30 S 20 10 0.00 0.05 0.10 0.15 0.20 $ho~({
m fm}^{-3})$

P. Danielewicz & J. Lee, NPA 818, 36 (2009)

Correlations of Symmetry Coefficients & $S(\rho)$

~150 Skyrme interactions with force constants from J. Rikovska Stone

Bulk nuclear properties for different Skyrme interactions *P. Danielewicz & J. Lee, NPA 818, 36 (2009)*

Name	a_V	m^*/m	K	a_a^V	L	a_S	a_a^S	ΔR	
SkT	-15.40	0.602	333	24.8	28.2	14.2	17.5	0.477	
SkT1	-15.98	1.000	236	32.0	56.2	18.2	14.6	0.799	പ്പ
SkT2	-15.94	1.000	235	32.0	56.2	18.0	14.7	0.794	V S
SkT3	-15.94	1.000	235	31.5	55.3	17.7	15.3	0.776	a
SkT4	-15.95	1.000	235	35.4	94.1	18.1	11.5	0.986	
SkT5	-16.00	1.000	201	37.0	98.5	18.1	10.9	1.084	
SkM1	-15.77	0.789	216	25.1	-35.3	17.4	59.6	0.180	

Symmetry coefficient -- $a_a(A)$

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_a \frac{(N-Z)^2}{A} + E_{mic}$$

Determine $a_a(A)$ by fitting directly to the ground-state nuclear energies ??

<u>Not good !</u> Symmetry energy contribution is small + competition between different physics terms in the formula ...

Best way \rightarrow *Study symmetry energy in isolation from the rest of Energy formula (impossible ??)*

<u>Charge invariance</u>: invariance of nuclear interactions under rotations in *n-p* space Symmetry term is a scalar in isospin space:

$$E_{a} = a_{a}(A) \frac{(N-Z)^{2}}{A} = 4 a_{a}(A) \frac{T_{z}^{2}}{A}$$

Generalization

$$E_{a} = 4 a_{a}(A) \frac{T^{2}}{A} = 4 a_{a}(A) \frac{T(T+1)}{A}$$

(Through +1, most of Wigner
term from E_{mic} is absorbed to
Symmetry term)

a_a(A) Nucleus-by-Nucleus

$$E_a = 4 a_a(A) \frac{T(T+1)}{A}$$

In the ground state, T takes in the lowest possible value $T = |T_z| = |N - Z|/2$

Low excited state of a given T – isobaric analog state (IAS) of the neighboring nucleus ground-state

With generalization, excitation energy to an IAS
(e.g. J. Jänecke et al., NPA 728, 23 (2003)):

$$E_2(T_2) - E_1(T_1) = \frac{4 a_a}{A} \{ T_2(T_2 + 1) - T_1(T_1 + 1) \} + E_{mic}(T_2, T_z) - E_{mic}(T_2, T_z) \}$$
Corrections for microscopic
effects + deformation
$$a_A^{-1}(A) = \frac{4 \Delta T^2}{A \Delta E}$$

$$\stackrel{?}{=} (a_A^V)^{-1} + (a_A^S)^{-1} A^{-1/3}$$

✓ Data: Antony et al., ADNDT 66,1 (1997)

 ✓ E_{mic}: Koura et al., ProTheoPhys 113, 305 (2005) Groote et al., ADNDT 17, 418 (1976) Moller et al., ADNDT 59, 185 (1995)

P. Danielewicz, NPA 727, 233 (2003)
P. Danielewicz & J. Lee, NPA 818, 36 (2009)
P. Danielewicz & J. Lee, Int. J. Mod. Phys. E 18, 892 (2009)

P. Danielewicz & J. Lee, NPA 818, 36 (2009)
P. Danielewicz & J. Lee, Int. J. Mod. Phys. E 18, 892 (2009)

Consistency?

$$\frac{1}{a_a(A)} = \frac{1}{a_a^V} + \frac{A^{-1/3}}{a_a^S} \xrightarrow{A > 20} a_a^V, a_a^S, L$$

Established method to be robust

 \rightarrow analysis need to agree with those underlying the theory (half- ∞ matter calc.)

<u>Spherical SHF calculations for consistency check !</u>

Coefficient-extraction :

Realistic (blue) and unrealistically large (green) (up to A~10⁶) nuclei

(code from P.-G. Reinhard)

Red line: linear fit to nuclei in 20<A<240, green line: expectation from half-infinite matter Calc.

> Fitted values are close to the predictions

 \succ Systematic difference \rightarrow Nuclei in Nature too small for clean surface/volume separation

 \blacktriangleright Consequence: a_a^V a bit smaller, a_a^S a bit larger $\rightarrow L$ is a bit smaller than from the IAS analysis

Outlier Skyrme Interactions

For some Skyrme interactions, dramatic difference between the coefficients from the fitted (20 < A < 240) values and predictions

Interactions with large deviations tend to have objectively unphysical features:

- Unstable in long-wavelength limit and/or
- Strong non-locality in symmetry energy

Deviations -- Skyrme Characteristics

✓ Long-wavelength instability for the Skyrme interactions → lowest l=0 Landau parameter $L_0 < -1$

✓ Non-locality in symmetry energy quantified by ζ : $\mathcal{H} = ... + \zeta (\nabla \rho_{np})^2$ excessive <u>large</u> ζ → inter-nucleon interaction is <u>senselessly</u> long-range

Before firmer conclusion a_a^v, a_a^s, L , Skyrme interactions with non-physical features need to be filtered out!

Constraints of $S(\rho)$ from Different Sources

More consistency \rightarrow systematic errors need to be well understood and controlled in different sources

Summary and Outlook

- Mass-dependent symmetry coefficient $a_a(A) \simeq a_a^V/(1 + a_a^V/a_a^S A^{1/3})$
- Two fundamental densities (isoscalar & isovector) characterize nucleon distributions
- Half- ∞ HF calculations with ~150 skyrme interactions $\rightarrow a_a^{\ S}$ is strongly correlated with slope of symmetry energy (faster the drop of symmetry energy \rightarrow smaller $a_a^{\ S}$)
- Parameters extracted from Isobaric Analogy States data (A>20): a^V_a = (31.5 - 33.5) MeV, a^S_a = (9.5 - 12) MeV L ~ 95 MeV (w/ Half-∞ HF calculations)

• Spherical SHF calculations gives qualitative understanding of the validity of the employed procedures with IAS

- Constraint from IAS overlaps with those from reactions
- Outlook:
 - -- Better constraints on $S(\rho)$ (interaction stability, Coulomb, shell & deformation effects)
 - -- Feature of symmetry energy by systematics of proton distributions alone (benefited from the universal densities – isoscalar & isovector densities)