Charge exchange spin dipole sum rule and the neutron skin thickness

Kentaro Yako (University of Tokyo)

NuSYM10, Jul. 27, 2010

Isovector modes of the giant resonance

Giant resonances

- Gross feature of nuclear matter at p≈p0
- Constraints on effective interaction: (f.g. Skyrme type) Excitation energy, Width, ...
 N.B.) comparison through structure model

Isovector spin modes

Contents

1. Deduction of less model-dependent quantity

 \rightarrow Neutron skin thickness

⁹⁰Zr(p,n) and ⁹⁰Zr(n,p) work @RCNP

2. Search / establishment of new collective modes

⁹⁰Zr, ²⁰⁸Pb(t,³He) work @BigRIPS + SHARAQ

Neutron skin thickness

proton and neutron distributions : fundamental properties of nuclei

Method of obtaining δ_{nn}

- electron elastic scattering
- proton elastic scattering
 - isovector GDR excitation by α scattering
 - antiprotonic x-ray
 - parity-violation electron scattering
 - isovector spin-dipole sum rule

Charge exchange spin dipole operator: $\hat{O}_{SD\pm} = \sum_{im\mu} t_{\pm}^{i} \sigma_{m}^{i} r_{i} Y_{1}^{\mu}(\hat{r}_{i})$ Model independent sum rule: $J^{\pi} = 0^{-}, 1^{-}, 2^{-}$

$$S_{-} - S_{+} = \frac{9}{4\pi} \left(N \left\langle r^{2} \right\rangle_{n} - Z \left\langle r^{2} \right\rangle_{p} \right)$$

(p,n) (n,p) e scattering

extract total SD strengths from

⁹⁰Zr(p,n) [Wakasa et al.] and ⁹⁰Zr(n,p) data taken at RCNP

model dependent

(p,n) & (n,p) work

(p,n) & (n,p) at 300 MeV

- Simple reaction mechanism
- 300 MeV:
 - Distortion effects are smallest (t_0).
 - \Rightarrow analysis with DWIA is reliable.
 - Tensor interaction is smallest (t_{τ}^{T}).
 - \Rightarrow Proportionality relation is reliable.

cross section \iff strength

... Multipole decomposition analysis works best.

(n,p) experiment at RCNP

Small dipole (?) peaks are observed at 3 MeV 6 MeV 10 MeV

SD strengths?

Multipole decomposition analysis

DWIA inputs

• NN interaction:

t-matrix by Franey & Love @325 MeV

- optical model parameters: Global optical potential (Cooper et al.)
- one-body transition density: pure 1p-1h configurations
 - n-particle
 - $1g_{7/2}, 2d_{5/2}, 2d_{3/2}, 1h_{11/2}, 3s_{1/2}$
 - p-hole

 $2p_{1/2}$, $2p_{3/2}$, $1f_{5/2}$, $1f_{7/2}$ radial wave functions ... W.S. / H.O.

DWIA ... reliable

FIG. 2 (color online). Angular distributions of the doubledifferential cross section for the ${}^{48}\text{Ca}(p, n){}^{48}\text{Sc}$ reaction at (a) $E_x = 2.6$ MeV, (b) 1.0 MeV, and (c) 0.0 MeV. The curves represent DWIA calculations with appropriate normalizations.

Decomposed spectra

Proportionality relation & unit cross section

SD strength distributions

SD strength distributions

Sum rule value

Neutron skin thickness

$$\frac{S_{-} - S_{+}}{\sqrt{\langle r^{2} \rangle_{p}}} = 4.19 \,\mathrm{fm}^{2} \,\delta_{np} = 0.07 \pm 0.04 \,\mathrm{fm}$$

method	nucleus	$\delta_{_{np}}$ (fm)	Ref.
p elastic scatt.	⁹⁰ Zr	0.09±0.07	Ray, PRC18(1978)1756
antiprotonic x-ray	⁹⁰ Zr	0.09 ± 0.02	Trzcinska, PRL87(2001)082501
IVGDR by α scatt.	^{116,124} Sn	±0.12	Krasznahorkay, PRL66(1991)1287
SDR by (³ He,t)	¹¹⁴¹²⁴ Sn	±0.07	Krasznahorkay, PRL82(1999)3216
SDR by (p,n) & (n,p)	⁹⁰ Zr	0.07 ± 0.04	this work, PRC74(2006)51303R

goal of parity violation electron scattering: ± 0.04 (1%)

Summary ... SDR $\rightarrow \delta_{np}$

- We studied SD excitations from ⁹⁰Zr by the (p,n) and (n,p) reactions by MD analysis.
- The strength distributions below 25 MeV excitation are well reproduced by HF+RPA calculations with quf=0.68.
- Integrated SD str. below 40 MeV (in fm²):
 - $S_{-} = 247 \pm 4(stat.) \pm 12(MD)$
 - $S_{+} = 98 \pm 4(stat.) \pm 5(MD)$
 - $S_{-} S_{+} = 148 \pm 6(stat.) \pm 7(MD) \pm 7(syst.)$
- Neutron skin thickness: 0.07 ± 0.04 fm

Collaborators:

Experiment: K. Y., H. Sakai, and RCNP-E149 collaborators Theory:

H. Sagawa, S. Yoshida

[E149 members]

K. Yako, H. Sakai, M.B. Greenfield, K. Hatanaka, M. Hatano, J. Kamiya, H. Kato, Y. Kitamura, Y. Maeda, C.L. Morris, H. Okamura, J. Rapaport, T. Saito, Y. Sakemi, K. Sekiguchi, Y. Shimizu, K. Suda, A. Tamii, N. Uchigashima, T. Wakasa Measurement of the Isovector Spin Monopole Resonance via the 208 Pb, 90 Zr(t, 3 He) Reactions at 300MeV/u

Kenjiro MIKI Univ. of Tokyo and RIKEN Nishina Center

Isovector spin monopole resonance (IVSMR)

IVSMR		operator :	$O_{1\mu}^{\pm} = \sum_{\cdot} \sigma_{\mu} t_{\pm} r^2$			
		sum rule :	$S_{-} - S_{+} = 3\left(N\left\langle r^{4}\right\rangle_{n} - Z\left\langle r^{4}\right\rangle_{p}\right)$			
	Significance					
ΔL=0, ΔS=1 2ħω		 Constrain Effective interaction (Skyrme int. etc.) "Compression" mode nuclear compressibility involving spin-isospin vibration Verv sensitive to skin thickness 				
<u> </u>	Previc	<u>bus Exp.</u>				
	IVS IVS	SMR(β ⁻) – a <mark>SMR(β⁺)</mark> – r	a few signatures (³ He,t)@KVI, (p,n)@LANL no clear signature			
(n,p)@IKIUWF						

Our Measurement : ²⁰⁸Pb, ⁹⁰Zr(t,³He) @ 300A MeV

Target : Pauli-blocking emphasizes IVSMR(β⁺)

50

Probe : Clean & Surface-sensitive

(t,³He) @ 300A MeV

Experimental conditions

<u>Beam</u>

Primary : ⁴He 320MeV/u 300pnA Secondary : triton 300MeV/u 1x10⁷pps Purity > **99%**

<u>Obtained spectra</u> ²⁰⁸Pb(t,³He) ²⁰⁸TI ⁹⁰Zr (t,³He) ⁹⁰Y

$$0 < E_x < 70 \text{ MeV} \\ 0 < \theta < 3 \text{ deg}$$

Resolution(FWHM)

 $\Delta E \sim 2.5 MeV$

- energy spread of 2nd beam 1.9MeV
- energy loss in target 1.4MeV

 $\Delta\theta \sim 0.5 deg$

- angular spread of 2nd beam 7mrad
- multiple scattering in target 6mrad

Angular distribution

Angular resolution

- crucial for the separation of $\Delta L=0$ and $\Delta L \ge 1$

Our resolution of $\Delta \theta \sim 0.5 \text{ deg}$ is sufficient.

²⁰⁸Pb(t,³He)²⁰⁸TI @ 300A MeV

- Stat. accuracy (Odeg)
 ~ 2% for 1msr 1MeV bin
- Bumps at 4MeV, 15MeV
 -- peak around the forward angle
 → ∆L=0 ?

$IVSMR(\beta^{\scriptscriptstyle +})$ for ${}^{90}Zr$

- IVSMR(Δ L=0) \rightarrow Forward-peak
- Comparison between
 <u>0.0-0.5 deg</u> .vs. <u>0.5-1.0 deg</u>
- Significant ∆L=0 component around 20MeV
- Theoretical predictions : TDA(SGII) , TDA(SIII)

Hamamoto, Sagawa : Phys.Rev.C 62 (2000) 02431920

TDA(SIII) seems to be good.

Summary ... IVSMR

- The ²⁰⁸Pb, ⁹⁰Zr(t,³He) reactions were measured at $0 < E_x < 70$ MeV and $0 < \theta < 3$ deg
- Evidences of <u>IVSMR(β+</u>) were for the first time obtained.
 ⁹⁰Zr : ~ 20 MeV
 ²⁰⁸Pb : ~ 12 MeV
- TDA(SIII) reproduces the distribution.
- Multipole Decomposition Analysis is in progress.
 Ex, Γ,
 collectivity / quenching (sum rule), ...

Collaborators

University of Tokyo Kenjiro MIKI Hideyuki SAKAI Shumpei NOJI K. Y.

RIKEN Nishina Center

Masaki SASANO Hidetada BABA Tetsuya OHNISHI Hiroyuki TAKEDA Naoki FUKUDA Daisuke KAMEDA Kensuke KUSAKA Yoshiyuki YANAGISAWA Atsushi YOSHIDA Koichi YOSHIDA Toshiyuki KUBO

CNS, Univ. of Tokyo

Tomohiro UESAKA Susumu SHIMOURA Shin'ichiro MICHIMASA Shinsuke OTA Akito SAITO Yoshiko SASAMOTO Hiroyuki MIYA Hiroshi TOKIEDA Shoichiro KAWASE

Kyoto University Takahiro KAWABATA

Michigan State Univ. Remco G.T. ZEGERS

Univ. of Notre Dame Georg P.A. BERG